
1

Good afternoon – my name is Lars Bishop, and I’m an engineer with NVIDIA’s

Developer Technologies group. This afternoon, I’m joined by two of my colleagues,

Chris Cowan from NVIDIA and Meekal Janshoshek from Capturing Reality, and we will

be discussing a range of topics of interest to Photogrammetry in games. Specifically,

Chris will start with an artist’s view of applying photogrammetry to a games pipeline,

and some guidelines that have worked for him in practice. Then Meekal will focus on

reconstruction software itself, showing how his company’s tool, Reality Capture, can

generate detailed models from photos.

2

He’ll also provide some tips on using reconstruction software more effectively, based

on a better understanding of how each step actually works in the tool. He’ll close

with how Capturing Reality is working to make photogrammetry easier to integrate

into game pipelines. Then, I’ll be coming back to discuss a programmer’s view of the

pipeline and how to choose integration methods to connect the various tools. I’ll

finish up by showing examples of pipeline integration, integrating Reality Capture

directly into the Unity game engine’s editor in a few different ways. So let’s get

started by defining a few things…

3

For many of you, this part is extreme review, but it will set a framework for what we

consider “the pipeline”. Basically, we start with taking photos; a whole lot of them,

most likely. Anywhere from a few dozen to thousands upon thousands depending on

the object being reconstructed, and the detail level we want in the end. Those

photos generally need a little cleanup or adjustment.

4

Then we feed them into a photogrammetry tool, which matches features in the

images, figures out where the cameras were and what they were looking at, and

generates a very high density geometric model. It also generates either per-vertex

colors or an even higher density set of textures. Now, for non-gaming uses, that may

be the end of the pipeline, but in games we’re picky about the models and textures,

so we’ll generally end up decimating the model, cleaning up the mesh and the

textures, and then passing the asset off to the team for use in the game. Each of

these steps will get some more attention several times in this session.

5

A key thing to consider when approaching any software tool is to know who forms the

CURRENT main market for that tool: they naturally drive the feature sets and

expectations for that tool. We have to remember as game developers that we’re

relative newcomers to a field that, in all honesty, isn’t all THAT new. I actually did

some work with stereo reconstruction in grad school in the mid 1990s and even then

it was well established. The classic drivers of this market are remote sensing for

cartography and intelligence analysis; stereo photography was used in world war two

as an early form of 3D reconstruction.

6

Much more recently, film studios have used it for scene reconstruction for about two

decades. <CLICK> Also, museums and archaeologists use it to non-invasively recreate

and catalog fragile or immovable treasures for research and exhibition purposes.

Most of these results are focused on dense geometric quality, rather than real-time

visual results. Obviously, we’re focusing TODAY on the NEWcomer, gaming; so we’re

still going to have to pre- and post-process the data.

7

So, if other markets have been using photogrammetry for quite a while, why the push

for games applications now? We see it as the intersection of several trends. First,

the demand for realism, detail and EXPANSE in games has continued unabated for

several decades now. In addition, games continue to require more and more organic,

and real-world locales. And game schedules and budgets can’t keep growing. Those

are major drivers of desire.

8

On the other end is the advancing technology. Thanks to GPU computing, the fact

that photogrammetry is computationally expensive, image-based, data-heavy, and

massively parallelizable means that leaps in performance on the order of

MAGNITUDES rather than FACTORS is possible. Finally, the availability of compute-

capable GPUs everywhere means that NVIDIA’s CUDA and other languages are

available on any game dev PC. Reality Capture and AgiSoft, among other tools have

taken advantage of that, optimizing for, or even solely focusing on CUDA-based GPU

algorithms.

9

While we’ll discuss other methods in passing today, our concept of photogrammetry

for this session involves mainly; on-site capture, rather than in-studio, scanner-style

capture. Visible light capture, i.e. photos, not laser scans or special IR projector

systems. The registration of cameras via image processing, and not via fixed cameras

screwed into pre-calibrated rigs. And of course, we’ll focus on the generation of

high-res models in GPU-based software, along with simplification and processing to

focus on real-time models.

10

Just about any of us who have tried photogrammetry personally for the first time

have this dream; I know I did when I first attempted it. We figured we’d take our

favorite camera, maybe even just a cell phone, <CLICK x2> walk around the desired

location, lackadaisically shooting pictures from what seemed like the right locations.

We’d stand up normally like we were shooting vacation photos until we got bored,

and then <CLICK x2> take the photos back to our desk and <CLICK x2> expect to have

a nice, textured game-ready model pop out.

11

Then, there’s “the producer’s nightmare” of photogrammetry. The fear that

photogrammetry means a big crew carrying expensive gear to some distant location.

Upon arrival, they still forgot stuff. <CLICK x2>They sit in the hotel waiting for the

right weather and lighting. Finally, they give up and shoot anyway because they have

to fly home. <CLICK x2> They spend long days down in the mud, hoping they’re

getting the right photos. And on the other end of the return flight<CLICK x2> ,

there’s days of photoshop work, hundreds of useless photos, and long waits for

reconstructions to finish. Finally <CLICK>, more work to fix it up. The reality, from

what we’ve seen, is <CLICK> that the DREAM is not yet realized, but the NIGHTMARE

is very much avoidable even with today’s tools.

12

So, having set the stage, I’ll yield it to our other speakers for a bit. Our next

speaker, Chris, is an artist on the demo team at NVIDIA. He’s been a user of

photogrammetry for about twenty years, starting in the film industry.

13

Following Chris will be Meekal of Capturing Reality; he’s made a successful transition

from cutting-edge photogrammetry research in his doctoral dissertation to applying

that work in the commercial package Reality Capture that he’ll be demonstrating

today. Finally, I’ll come back at the end; I’ve split my career between 3D games

middleware and mobile devices. Chris?

14

Hello, My name is Chris Cowan, I am a demo artist at NVIDIA

I have been working in the film and CG industry as a character modeler and a cg generalist for
approximately 20 years.

I use a lot of tools to build a wide variety of objects and Photogrammetry makes that process
faster and more accurate.

I started experimenting with photogrammetry about 20 years ago at Disney on the movie
dinosaur.

There were many shots in the movie that required accurate reconstruction of real world
locations.

We ultimately used a combination of lidar and photogammetry to retrieve data.

At the time lidar was very new and very expensive, also the data was prohibitively heavy.

Photogrammetry was also new but the idea seemed very promising.

I was using photomodeler to place what would be control or alignment points now but were
actually poly vertices of the handmade scan at the time.

Even with the limitations of early photogrammetry software it was apparent how valuable the
information from just imagery could be…

Now with improvements like- gpu acceleration, High resolution digital cameras and especially
software like Reality Capture, scans can achieve the detail and quality of extremely
expensive laser scanning solutions.

15

So what makes such a game changer..

With photogrammetry anyone can become a high precision 3D scanner, requiring relatively cheap
hardware and simple basic camera techniques.

A basic camera instruction video and some practice with your camera of choice can produce amazing
results…

Photogrammetry allows you to capture an object or place that might change or be destroyed at a later
time… Movie sets, crime scenes, or objects that decay for instance.

The quality of the images will not improve after being taken, but the software will.. therefor you can
expect to be able to reproduce even better results in the future from the same images.

With streamlined workflows asset creation time for real-world objects can be dramatically reduced.
Dice & EA's work on Star Wars Battlefront is an amazing achievement and a first blueprint for real-world
capture. One important slide in their GDC 2016 presentation asked - how much faster can an asset be
made using photogrammetry. And the answer was - a first gen estimation of Approximately 50% faster
and an estimated 70 % faster with future refinements in pipeline and process.

Photogrammetry allows an incredible amount of freedom... Image sequences from almost anywhere can
be used to reconstruct real world objects. Vr walkthroughs of remote inaccessible locations, Set
reconstruction and camera tracking for visual fx.

Reality Captures incredible speed and accuracy allows you to experiment with settings without tying up
workstations for huge amounts of time.

And as newer and faster generations of gpus become available, results will be achieved even faster.

Also with The new sdk studios will be able to get under the hood and customize RealityCapture to their
specific needs and pipeline.

16

Do you need expensive equipment or training… Absolutely not…

Any camera will work, but the higher the resolution and quality the better the results will be.

Prime lenses tend to be the best because of their consistency, and usually produce higher quality
images.

Star Wars Battlefronts incredible results were achieved with just 20 MegaPixel cannon 6Ds and 24 mm
lenses.

With newer cameras reaching 50 MegaPixels, incredible detail can be captured.

Video cameras are being used more and more as well. Obviously motion blur and rolling shutter are
issues, but shot correctly individual frames can be used for construction.

Spherical cameras are also improving daily, and captures within the reconstruction area can record the
environment for delighting purposes.

If all you have is a smartphone, excellent results are possible as well. Especially with the latest phones
reaching 12 MegaPixels.

I have seen very detailed scans done with just a smartphone.

Drones with very good cameras are now common place.

And allow you to reconstruct objects and locations you could not reach any other way.

Drones produce very clear, stabilized images perfect for reconstruction..

And quality will improve rapidly as the drone industry matures.

RealityCapture also allows you to incorporate Lidar scans into the photogrammetry solution, allowing
you to get the best of both worlds.

17

On to the process… Image Capture..

Coverage and overlap are very important. You should have at least 50% overlap to allow for good camera
alignment.

Lighting is important..

Good ambient lighting is best. Overcast days outside and Diffused Light boxes inside.

It is best to shoot raw to retain higher bit depth, and future proof your data. No in camera processing
except white balance if necessary and only mechanical image stabilization.

As for camera Settings:

Manual gives you the most control of the image but is the easiest to screw up.

Automatic will usually always get the shot but can introduce a lot of noise in challenging lighting
situations.

Higher shutter speeds should be used to reduce shake or blur.

But every person has a different threshold for how slow a shutter speed they can use, and still get crisp
shots.

Always use the lowest possible ISO setting and as much depth of field as possible without sacrificing
quality.

Ultimately It’s all about light, and how you trade off between shutter speed, ISO and aperture, to get
the best shot.

18

Why worry about the environment when you are capturing objects?

Captured objects will most likely end up in scenes that have completely different

lighting conditions than they were captured in.

This means the environmental light contribution and shadows at the time of capture

will need to be removed from textures.

An HDR panoramic image can be very useful for determining the lighting conditions at

the time of capture..

along with a color calibration chart.

Unfortunately HDR Panoramas can very time consuming to make on location, but with

the advent of new panoramic cameras, the process can be speeded up considerably.

Also without the time consuming stitching process needed for traditional hdr

panoramas when you get back to the studio.

Cameras like the Ricoh Theta S are very portable, (even shirt pocket sized) and apps

make the capture of multiple exposures for HDR effortless and fast.

19

What to do with your images??

Should you use two sets of images?

Two sets of images can be used to produce a final result… one geared towards the best
possible reconstruction… and another for the best texture result.

For reconstruction –

Masking can be done on the Images helping reduce model cleanup. Masking is often used for
objects being captured on a turntable.

If you find some reconstruction images are soft and are absolutely necessary to get good
coverage, some sharpening can help. Contrast can be increased as well.

Reconstruction images might also use a structured light pattern. The pattern is projected
onto the object, then turned off before a second set of texture images is taken in quick
succession.

For the texture Image set -

The images for texture extraction should have shadows and highlights removed.

Color and exposure should be equalized taking into account the incident light contribution -
possibly using a panoramic hdr image taken at the time of capture.

The goal should be a final texture with just the pure color of the target object.

20

Now you are ready to start building something…

Images for reconstruction are imported into Reality Capture and the alignment process is run.

Hopefully, all your careful camera work and image overlap will give you one component.

If you end up with more than one component..

Control points can be placed in each component that have visible matches.

The separate components can then be aligned and merged

Ground control points can be used to geo-reference an object, and give scale to constructions as well.

Flight logs are also helpful in alignment and geo-referencing constructions.

Camera rigs, such as the ones used by TEN 24 with a 100 plus cameras are also going to be supported.

So all camera positions can be predefined for highly accurate repeatable results.

It is a good idea to know what level of detail an asset is going to require...

Like lidar, photogrammetry data can get heavy quick.

Reality Capture makes things a bit easier with it's incredible speed and quality.

The normal setting achieves quality comparable to hi on most other photogrammetry options. And at
many times the speed.

Allowing you to quickly decide if maximum settings are necessary.

Even at maximum settings results are generally as fast or faster than other solutions on normal settings.

21

So now you have a highly detailed high poly mesh, but now you need an efficient
asset. Time for retopology…

Generally you export a decimated version of the hi poly model from RealityCapture.

One that has all the form but not the hyper (pore level) Detail.

If the Hi Poly mesh has missing areas or needs cleanup it can be brought into
programs such as zBrush, meshlab or geomagic and cleaned up there.

For re-topology, The decimated representative mesh is brought into a program such
as topogun, maya, 3ds max, zbrush, 3d coat etc then an ordered mesh is snapped to
it.

The type of re-topology you perform is most likely dictated by the asset..

Whether it is going to be Animated, Static, a hero or background object.

Animated topologies usually require a fairly ordered layout, while static objects like
rocks and trees can be less so.

An optimized hand built mesh will usually be lighter and cleaner.

Although! automated re-topology has come a long way in programs like zbrush and 3D
coat.

22

So.. You have your model now you need textures…

Diffuse textures can be projected onto the High poly mesh immediately after

reconstruction but there can be some issues....

The Uvs can be less the optimal.

So we turn to external software options.

23

UVs can either be generated automatically or laid out manually.

Automatic methods have improved, but, they still tend to waste large amounts of

precious map space.

Photogrammetry packages can create uvs, but they tend to be shredded and

disorganized as the result of being projected from each image used in the 3d

construction.

This haphazard uv layout makes editing of textures in external software very

difficult.

There are many third party programs that uvs can be laid out in.

I prefer UV Layout but 3D Coat, 3DS Max, Modo and Maya have many tools and add-

ons to get the job done.

Zbrush has a good automatic unwrap that can give acceptable results as well.

24

Now that you have a efficient asset with optimized Uvs its time for texture projection

and baking.

The re-topologized and re-UVed mesh can now be brought back into RealityCapture

and the diffuse texture can be projected onto it.

For lighting and detail maps external baking is still necessary.

Finally.

Maps such as: Normal, Displacement, AO, Curvature, Ect.. can be made by exporting

the highest resolution model your system can handle from RealityCapture and

bringing it and the re-topologized mesh into another program such as

xNormal, Substance Designer, Substance Painter, Modo, etc .. etc .. and baking the

maps there.

And this completes the asset creation process.

25

And finally my wish list for new features

Hdr and High bit depth image input and baking support , on RC roadmap

Spherical image support. On RC roadmap

Direct video support. Using frame increments or manual frame choice.

Capture and processing of incident lighting.

It would be nice to move more of the external processes into RC -

Baking of all the detail maps- Normal, Displacement, AO, Curvature etc... on RC

roadmap

Shadow and incident light removal from the diffuse texture..

Pie in the sky … Manual and automatic re-topology (mesh creation)

OR – with the use of the new SDK.. Live link to external applications to perform these

types of functions.

26

27

Imagine that you can create an asset to your game of a real object or location just

from images.

Well, this process has been studied for centuries and is called photogrammetry.

It is clear that you need a photogrammetry tool.

28

Let me introduce RealityCapture.

A photogrammetry tool produced by us.

We released it publicly more than a year ago.

RealityCapture is fast. You can reconstruct a model in just few minutes.

It is the first software that has been able to process terrestrial lasers scans with

images automatically.

And you are not limited. You can process even one hundred thousand images on a PC.

29

Let me show you a project of one hundred thousand images running on one PC.

You will most probably not do such a project.

But this way I just want to demonstrate

that you are not limited by the number of images

or by size of your project.

30

https://youtu.be/1maJ2gfl02s

This is a 3D view of our application.

Each white dot represents one image.

More specifically, it represents a camera position and orientation at the time when

the image was taken.

The colored sparse point cloud is something we call “tie points”

and it is a by-product of image alignment process.

31

https://youtu.be/1maJ2gfl02s

Here you can see few image samples of the project.

The aerial images have been captured from drone.

Then there have been many ground-level images captured from street, windows,

roofs etc.

Also

rock climbers

have been employed

to capture some details

32

https://youtu.be/FNzCNx1GJQU

Let’s have a look at the alignment once again

Each white dot represents an image.

33

https://youtu.be/FNzCNx1GJQU

https://youtu.be/okHZYmzMWtg

Let’s take just this tower now.

The tower is 59 meters high, which is 194 feet.

This is just a sparse point cloud now.

It is not a model.

34

https://youtu.be/okHZYmzMWtg

https://youtu.be/gMzmJCQ5yI4

Now let’s take a look at the model.

It is in millimeter accuracy.

so you can see all the details …

Even the lightning conductor is reconstructed.

35

https://youtu.be/gMzmJCQ5yI4

https://youtu.be/lJPIhDHWWXk

Let’s take a look at

just one pillar of the tower.

The red rectangle displays its location on the cathedral.

The whole cathedral has been reconstructed in this detail.

This gives you an idea on what size the project itself must be.

It’s huge!

You are most probably interested just in assets of this size.

However, here I just wanted to demonstrate that you are not limited with

RealityCapture.

36

https://youtu.be/lJPIhDHWWXk

Let’s take a look at a smaller project that you are probably interested in the most.

I will guide you through a basic workflow in our application.

This dataset was captured just in 39 minutes.

There are something like 200 images.

37

https://youtu.be/8C60MB8hjaI

This is our application.

You can just drag and drop images into the application.

You can browse them in the left panel or in 2D views.

38

https://youtu.be/8C60MB8hjaI

https://youtu.be/rd3-pcZLdDM

Then you just press the Align button.

It took just 4 minutes to align these 200 images.

39

https://youtu.be/rd3-pcZLdDM
https://youtu.be/rd3-pcZLdDM
https://youtu.be/rd3-pcZLdDM

https://youtu.be/i0nfiBXsgUo

And after a while you can see the alignment in the 3D view.

You will not have time for a coffee for sure :)

40

https://youtu.be/i0nfiBXsgUo

https://youtu.be/bhJJ51egNQs

Camera poses are computed for each image during the alignment.

Moreover, focal length and image distortion are computed, too.

You can check it here.

That means that all you need is just your photos.

No pre-calibrations

No industrial cameras

Just use anything you have.

For example your Iphone, your DLSR, tour GoPro … whatever.

The colored sparse point cloud is a by-product of the alignment process

We call these points as “tie-points”.

You can see them in the 3D view, too.

41

https://youtu.be/bhJJ51egNQs

https://youtu.be/mI7tav61rag

So how it works internally?

First, the software detects some unique features in each and every image.

For example :

a window corner

or

spot on a wall

42

https://youtu.be/mI7tav61rag

https://youtu.be/HYUYiCYvt4s

Next, the software finds all images that see the same spots

here for example on the walls.

In other words,

it groups all features

that match the same physical point.

43

https://youtu.be/HYUYiCYvt4s

https://youtu.be/ELlmNh28qG4

Once the software computes camera poses and matches.

Then it is easy to compute a 3D point for each match using triangulation.

Here I placed just one control point

to demonstrate

the internal triangulation process.

44

https://youtu.be/ELlmNh28qG4

https://youtu.be/Mw6bpefTNcg

The tie points are very helpful.

They help you to

see the scene structure

so that you can select your object of interest.

Use this reconstruction region tool to select it.

This is the best practice

because the application will not have to reconstruct parts

that you are not interested in

and so it will be faster.

Finally, you can decide what quality you want your model to be in.

Preview

Normal

High

45

https://youtu.be/Mw6bpefTNcg

https://youtu.be/b_Dxumu5zRw

Let’s take a look at the models.

Here,

in the 1D view on the left,

you can see the project structure including all models.

The preview quality is very low.

It is literally just a preview.

But it is fast since it is just meshing of tie points.

This is the model computed in normal quality.

I like to use the normal quality

it is reasonably fast

and

it gives good results.

46

https://youtu.be/b_Dxumu5zRw

https://youtu.be/w4751JL78T4

When you select a model,

then a panel with all details of the model is displayed.

This model has 48 million triangles

and has been computed in 40 minutes on normal quality.

If you need the highest possible detail,

then use high quality.

There is usually 4 times more detail

at a cost of 4 times longer processing time.

It was 3 hours for 183 million triangles in this case on high quality.

47

https://youtu.be/w4751JL78T4

https://youtu.be/69Tf2cKorTo

In the 3D view you can see just vertices of the model.

But if you make an orthographic projection,

then it is computed from the full mesh

that is stored inside.

For example here.

This is the orthographic projection.

48

https://youtu.be/69Tf2cKorTo

https://youtu.be/LwmfVngce-Y

You can do whatever you want with the model after it is computed.

You can compute colors of its vertices

and create orthoprojections

which is important for making a project documentation.

But you, as game developers,

will be interested in simplification and texturing.

Or simplification, export, re-topologization, import, and texturing.

This is,

for example,

the difference between coloring on a full model

and texturing on a simplified one.

The top is texturing.

and

The bottom is coloring.

49

https://youtu.be/LwmfVngce-Y
https://youtu.be/LwmfVngce-Y
https://youtu.be/LwmfVngce-Y

https://youtu.be/xpqWbPEb3pg

There are many tools inside the application for different tasks.

For example,

this is a simplification tool

that I have used to simplify the normal model

to one million triangles.

Then I used the texturing button to compute the texture for it.

And you can see the texturing parameters in the model panel too.

50

https://youtu.be/xpqWbPEb3pg

Let me talk a little bit about speed of different parts.

As you can see on the slide the most time consuming part is model computation

Which usually takes 80% of the whole processing time.

Alignment is usually very fast and takes just 10% of the whole processing time.

Texturing takes usually the same time as alignment but it depends on the number of texels.

Therefore if you want to speedup your computation then

it is worth to speedup the model computation part.

You can do it by using multiple GPUs.

Here you can see how it scales with multiple GPUs on different datasets.

There is a bottle-neck in host to device data transfer which can be partially solved by
updating our algorithms.

We work on that.

But still,

you can save a lot of time by using more GPUs.

51

This is basic architecture of our solution.

The bottom layer is our SDK.

The SDK contains all executive parts like:

alignment,

model computation,

geo-referencing,

export/import,

texturing,

ortho-projections,

model-model re-projections, etc.

The licensing layer runs on our web servers

and unlocks the SDK.

Finally,

The user interface layer

is the top layer and it is just a thin-client.

In another words

having our SDK

you can create exactly the same application as we have.

52

I am thrilled that I can announce here that we will release RealityCapture SDK this

summer.

We will call it RealityCapture Engine. It will be accessible for everybody.

Deployment will be for free and you will pay as you go.

Let me explain it in more details.

53

This is a developer

He creates a development account at our webpage, for a small price.

Then he can download and incorporate our SDK to his project.

He can use as many computers as he wants for free.

Then once he is ready he distributes his application to users. The deployment is completely for free.

54

This is the user. He wants to reconstruct these images. Let’s say that they contain 2 Gigabytes of disk
space.

All the user needs to do to unlock the application for his input images is that he needs to buy a license
for each image.

This is our new licensing model which we call “Pay Per Input”.

The user however, does not need to upload all images. He just needs to upload a fingerprint of each
image. That, in this case, will not be more than 1kB, for all images together. This way is also privacy
of the image data secured.

Then the server sends unlock data to the deployed application and all features will be unlocked for the
input images.

This way you are not bounded to a computer so you can process the same data on many computers but
pay just once!

55

I know that you already have thousands of ideas on how to use this engine.

For example :

integrate photogrammetry to your in-house workflow

create plugins for other tools

automate your processes

create cloud-based solutions

create a one-button solution

And so on and so on.

Well …

And it is accessible for everybody

56

If you would like to try our SDK prior to its official release.

Then please don’t forget to take this flyer.

Thank you for your attention.

57

58

To close out the session, I’ll discuss topics on the programmer’s role in the

photogrammetry pipeline. This is by no means comprehensive, but is designed to

introduce some of the existing integration points, some of the common workflows,

and to demonstrate a few experiments we have created to show the power of

integrating photogrammetry tools directly into existing game tools. I’ll finish with a

quick discussion of some other possible applications of pipeline integration.

59

Referring back to the earlier diagram, let’s look at things from a tool programmer’s

point of view, or at least mine when I began looking into it. First, we get a lot of

images, and I figured that there was little I could do to affect the actual capture of

those images. However, as I’ll show later, that isn’t quite true. But the first bit

where the programmer is very likely to show up is preparing the images. This can

involve <CLICK> triage, automatically skipping the images that are clearly not

usable, and it can involve <CLICK> pre-processing, ensuring that the good images

have the best chance of generating accurate models and textures.

60

The photogrammetry package itself is likely self-contained, but with lots of models to

be reconstructed, it’s also possible that programmed automation can ensure that

the assets are reconstructed consistently and at top performance. The next phase

<CLICK> is model and <CLICK> texture cleanup, and if possible, it would be great if

that could be done wasting as little artist time as possible. Finally, perhaps it

would be useful <CLICK> to be able to run as much of this pipeline as possible using

the actual game engine or its editor. So let’s dive in.

61

In order to automate this process, as a programmer, I need a way in. The

photogrammetry tool pipeline that Chris laid out involves quite a few tools, and a

lot of choices for each tool. One of the important aspects of this choice is whether

or not a tool allows automation, and if so, how. In the chart on this slide, I break

the levels of integration into three basic categories; First, those that require using

the GUI itself, either because they don’t support ANY automation, or because they

support a macro-like “record and play back” method. While these can be set up by

anyone who knows the tool, obviously the reusability of each automation is limited.

62

The next level is via some form of tool-specific scripting. This can be as simple as a

set of command-line options that let the user specify the operations, sources and

options for each step, and can be as complex as a proprietary language for setting

those same things. The command-line system has the drawbacks of being pretty

ungainly, and likely involving writing to file between each step. The scripting

method is limited because it is internal to that single tool. It doesn’t help connect

other tools together in a single script.

63

Finally come the Code-based SDKs, either as a high-level API in a language like

Python, or as a low-level API representing the tool’s data and pipeline via C++ or

C#. We’ll spend the most time talking about this lattermost case.

64

Lemme stop and clarify that I’m not saying a low-level SDK is the best method across

the board. Like any other tool, there is a balance to be made based on

requirements. For example, how complex of an automation do you need? “resize

all images” doesn’t require a C-sharp integration. Also, what tools are you

connecting together? What do they share in common in terms of automation? And

most importantly, who is going to support this tool? A C++ integration is great, but

if you have to find a C++ programmer for every fix you need, you’ll want to

consider how often that’s gonna happen. Let’s consider four common architectural

cases.

65

First <CLICK>, the case of applying the same processing on a ton of images in a one-

to-one pipeline. Almost any method is fine for that. In a sense <CLICK>, the most

easily accessible system possible, like command-line is possibly the best. Next

<CLICK>, a similar many-in,many-out pipeline but with multiple tools involved. In

this case, the main consideration is one method that can control BOTH tools. So

<CLICK>, either command line or a high-level SDK for both tools (assuming they use

the same language) are likely the easiest.

66

A major step forward is feedback, or results-based processing <CLICK>, where the

results of a step in a tool control what happens next, or whether we redo a step

with different settings. In this case <CLICK>, some form of SDK that gives

programming language access to the mid-pipeline data is going to be best. Finally

<CLICK>, the complex case of “plugging” a tool into a major GUI like a 3D modeler

or game engine editor. The best option here for deepest integration is probably

<CLICK> a low-level SDK, one that shares its language with the GUI tool itself and

can be treated as an “plugin”. My demos today will be examples <CLICK> of these

low-level SDK cases.

67

Source photos are an obvious place to automate, because most image operations are

simple and because of the sheer volume of images. Also, many image processing

frameworks already exist for batch work. Before preprocessing, there’s more you

could do; the highest performance images are the ones you skip. So if possible,

trying to drop bad images before they make it into the pipeline can be a win.

Blurry images, images with a ton of blown-out pixels, and other issues should be

dropped; if this photo culling can be done automatically, all the better.

68

On the other end of the pipeline, is the post-processing of the reconstruction results.

Right now, much of that can be hard to fully automate. Given the current quality of

photogrammetry U Vs <CLICK> compared to the desired unwrapping in games <CLICK>

U V remapping is the most requested. Currently, the major photogrammetry tools

already support some form of this by allowing a mesh to have U Vs generated in an

outside tool and then re-imported and the texturing stage done again, projecting into

the remapped, cleaner U Vs.

69

Looking ahead, the ability to use a photogrammetry tool’s SDK to automate this step

is a very high priority. And it could be done one of several ways; one is to integrate

the entire photogrammetry process into a larger tool that includes the UV remapping,

like Maya. The other architecture, which we’ve not touched on here is for the

photogrammetry GUI tool to expand ITS SDK APIs to include plugging into the

reconstruction pipeline itself, “trapping out” to a plugin to generate the U Vs.

70

One of the post-processing stages that Chris mentioned is more straightforward to

automate. This is the move from <CLICK> dense geometry to <CLICK> sparser

geometry along with detail textures like normal maps. Since this stage comes after U

V cleanup, there’s no re-import into the photogrammetry tool, and it should be

possible within one or two tools; one for generating the low-poly mesh, and one for

generating the maps. For example, it could be done via MeshLab and xNormal for the

two stages from the command line.

71

As I mentioned previously, with a low-level SDK for the reconstruction tool, it

becomes possible to integrate that tool into a GUI-based game engine editor. This

is exactly what I did with Reality Capture’s C++ SDK and Unity’s C-sharp

MonoBehaviors. I created a new MonoBehavior that calls down to Reality Capture

to provide Unity’s editor with built-in photogrammetry reconstruction. The first

step was to build a small C++ interop DLL that did the basic steps of reconstruction

using Reality Capture’s APIs, and then presented them as a C-sharp-compatible,

limited set of APIs. Then, in Unity, I created a C-sharp object that represented this

photogrammetry object, along with an editor UI.

72

To ensure that Unity’s UI is blocked as little as possible, the C-sharp code calls down

to the C++ DLL only in a secondary worker thread. Once the Reality Capture SDK

has generated a result in the background thread, it adds a function to Unity’s

update queue, so that the main Unity thread is called and we can safely make Unity

calls to convert the photogrammetry results into Unity geometry and textures.

73

Here, presented as video, is the viewer. We’re also giving live demos of the viewer

in NVIDIA’s booth.

74

https://www.youtube.com/watch?v=6SD3hZgQpnY

You can see each step here; we select the image directory. All images in that

directory are added to the reconstruction, and the system automatically kicks off the

computation of the tie points and camera locations. Then, we follow Meekal’s

recommendation and set a nice, tight bounding volume for the reconstruction. Then

we request model reconstruction. We’ve edited the video, but as you can see, the

actual timing is quick, and Unity is usable the entire time. We get back a dense,

vertex-colored model. We review it, and switch into wireframe to see the density.

Next, we adjust the slider to choose the level of simplification we want for the

geometry. Since we will be texturing this model in a minute, we can drop the

geometric density. Finally, the system textures the model in the background. Once

this is done, we have a fully textured Unity model.

75

https://www.youtube.com/watch?v=6SD3hZgQpnY

One of the things I alluded to in my original slide on programming the pipeline was

the idea that while the programmer is likely NOT on-site for capture, their CODE

could be. We’ve mentioned several times in the session that ensuring you have the

right images is important. Well, in a sense, the best way to ensure that you have the

right images is to run at least part of the actual photogrammetry pipeline on site.

This was key to our next example…

76

Since the tie points are cheap to compute, even on a laptop, perhaps we update

them as new images come in. All modern digital cameras can support wifi one way

or another. And basically all drones have wifi cameras. Using only a laptop and a

connected camera, we can compute the tie points and registration as each new

photo is taken. We can leave the location knowing what we’ve captured. We want

this to be 100 percent automated so the artists will feel comfortable using it on

site.

77

https://www.youtube.com/watch?v=HofnsfF6Qgw

Here is our experiment; extending the viewer I showed earlier, we add a new option:

WATCHING a given directory. I connected my camera to my laptop’s wifi, and set it

to transfer new photos into a selected directory. Now, I just shoot photos, and you’ll

notice the reconstruction updating as I do. This was all shot live on my laptop. The

inset window is the live view of me shooting – I attached a webcam to the laptop.

When I think I’m done, I COULD press the model button and even see what it would

look like. But mainly, I can just look over at the laptop while shooting, without

touching it and see how I’m doing. Or, if I had coworkers there, they could watch

the screen and direct me.

78

https://www.youtube.com/watch?v=HofnsfF6Qgw

Some tools are starting to allow videos as sources for reconstruction, others support

video-related features like rolling shutter correction. However, even a

photogrammetry tool without video support can work with a video codec library to

do some very interesting things via an SDK. Specifically, the iterative addition of

photos we used in the live pre viz can be very powerful. First, we use our video

decoder SDK to automatically decode key frames <CLICK>, either by regularly

sampling in time, or perhaps decoding only the I-frames. We run these images

through the photogrammetry tool’s SDK <CLICK> and analyze the location of the

cameras. We’ll get a base model or cloud from that <CLICK>.

79

We likely know the frames of video represent samples of a smooth sweep of the

camera, so in areas where we see large gaps between camera locations, we grab

MORE video frames in the gap in the timeline <CLICK>, which will fill in a camera

location <CLICK>, and fill the point cloud <CLICK>. Our code can continue adding

subdivision frames <CLICK>, computing the camera locations <CLICK> and updating

the cloud <CLICK> in an automated fashion, quickly, until we have good coverage.

At which point it can spend the time generating the detailed model from just the

right set of images. All of this is possible today with a system like Reality Capture’s

SDK.

80

Another very hot area of research is de-lighting. We want to be able to re-light our

captured objects in different orientations, for different seasons and times of day,

and possibly even in a completely different environment. This means removing the

incident lighting, or ”extracting the albedo” from the capture. Photogrammetry

tools contain data used during the computation of the model and texture that they

generally do not export. Specifically, by definition any point on the reconstructed

model <CLICK> had to be seen from at least two <CLICK> and hopefully more

<CLICK x 5> camera locations. In the more advanced tool SDKs, EACH point in the

reconstruction is linked to ALL of the image points where it was seen.

81

Now, when the tool exports a model with color, it must compute a single color from

these samples somehow. But in the SDK, the programmer has access to all of the

views of that point, the ray to the camera that shot it, and the color seen by that

photo. This can give a de-lighting algorithm far more information than just a single

color and a normal; it can allow the de-lighting model the possibility of estimating

the material or BRDF of the surface. There are a lot of complexities here, but the

possibilities here are quite open and interesting.

82

Thanks for joining us today; we hope the session has given you an idea of some of

trends in photogrammetry pipelines. Both photogrammetry tools AND integrations

around them are improving at a high rate. The performance of reconstruction is also

improving AT or ABOVE the rate of GPU hardware improvement, as photogrammetry

tools optimize their use of CUDA and multi-GPU. The output of the photogrammetry

tools are still not game-ready, but automation is allowing programmers to treat these

tools as a starting point for their OWN innovation. Finally, as Meekal has discussed

with respect to Reality Capture, it has never been easier to try out photogrammetry

for yourself with a professional pipeline and the GPUs you already have in your PC.

83

The Reality Capture SDK we demoed here and in the booth will be released publicly

in Q2, likely around NVIDIA’s Graphics Technology Conference, as will some of the

source examples from NVIDIA, including the Unity viewer. And Capturing Reality will

be releasing their new Engine licensing model in Q3 of this year.

84

Please do stop by the NVIDIA booth on the show floor, number 824; we’ll be showing

the Reality Capture Unity viewer plugin and Reality Capture as well as NVIDIA’s new

Deep-learning-based texture and material tools all week in our Content Creation

demo pod. We also have a VR experience of a large-scale Maori wood carving, set in

a beautiful location, all captured and reconstructed using Reality Capture and

rendered live in UE4. Thanks to my team presenters, Meekal and Chris, and let’s open

things up for questions.

85

