NVIDIA AFTERMATH:

A NEW WAY OF DEBUGGING CRASHES ON THE GPU
Alex Dunn, 2" March 2017

<ANVIDIA.

NVIDIA AFTERMATH

What is it?
NVIDIA .
*New tool to diagnose GPU crashes, available on GeForce! E%:(DRCE
«Coming to D3D for broad availability G
* Ability to classify GPU crashes by location and type _\

«Can be shipped in game - catch crashes “from the wild”

G@C www.gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

GPU CRASH?

a.k.a. TDR / Hang / Device Removed / Crash/ ?

Annoying - What can we do?

205>

nding and has recovered
Vi stopped

Gmr www.gameworks.nvidia.com

-] OAskmeany’thing 4 !_ . 9 ii_ < o] Eﬁ] E_ m v X @ H B L f’ e Ll -] e r H b | E_ ‘ x3 OB Nulte@B drolal @ @b e 27/1;/322017 ﬁ}

gameworks.nvidia.com

GPU DEBUGGING 101

Preventative
Changes timing

Development-use Only 2" line of defense: MSFT GPU-Based Validation
Limited coverage

1t line of defense: MSFT Debug Layer
Final line of defense: - Catches issues that fall through

- Minimal impact

- Shippable

G@C www.gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

OBSERVATION

Current state of the art in GPU crash debugging isn’t enough
*There’s no simple way to debug crashes after the fact

*Some bugs take months to resolve (really!!)

£ ¢

— . —_—

G@C www.gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

DETECTING GPU CRASH #2

1. Crash detected based on error code from API (CPU)
2. Crash happened sometime in the last N frames of GPU commands...

3. CPU call stack is likely a red-herring

CPU Location

GPU Crash

Not useful for debugqging!

G@C www.gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

POC IMPLEMENTATION

KO: Increase accuracy of GPU crash location

Plan:
* Game inserts user-defined markers in the command stream
* GPU signals each marker once reached

* Last marker reached indicates GPU crash location

S 1
W |

G@C www.gameworks.nvidia.com <ANVIDIA.

CPU Location

11 1.1 1
|

GPU Crash

— 00

gameworks.nvidia.com

POC IMPLEMENTATION #2

Implemented exclusively via DX12

» CopyBufferRegion inserts markers on GPU timeline
* Write to single memory location per queue

* Globally shared heap - post-crash accessible data

(* markerName) ({

renamingOffset = (renamingOffset + kMarkerSize) % kRingBufferSize;
D3D12 RANGE readRange = { 0 };
D3D12 RANGE writeRange = { renamingOffset, renamingOffset + min (kMarkerSize,strlen(markerName)) };

* mappedDataBegin =

uploadHeap—-> (0, &readRange, &mappedDataBegin) ;

{ (.)mappedDataBegin + writeRange.Begin), &markerName[0], writeRange.End) ;
iploadHeap—> (0, &writeRange) ;

commandList-> (sharedHeap, 0, uploadHeap, writeRange.Begin, writeRange.End) ;

G@C www.gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

POC IMPLEMENTATION #3

How it looks in practice;

S 1 |

I

sharedHeap Contents:

Fn‘H

GOC

CPU Location

14 11 |

tiledLighting_Cull

www.gameworks.nvidia.com

<ANVIDIA.

gameworks.nvidia.com

POC IMPLEMENTATION #4

Case Study: 10 Interactive
*10 Interactive facing very stubborn GPU crash
*|ssue was open for >2 months, main focus of weekly meetings with NVIDIA
*With POC, issue was identified and fixed in a single afternoon

* “This tool is excellent” ©

Conclusion:

- Discovering where a hang occurs in GPU timeline is valuable & actionable

G@C www.gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

POC (MINI) POST-MORTEM

Pros: Cons:
*Simple API - simple to integrate * GPU copies are super slow for this purpose
* Enabled classification of GPU crashes * Timing related behavior altered
*Insight into where GPU crashes occur *Separate process for marker read-back

*Serializes order of GPU work (wait-for-idle)

*Only supports DX12 - DX11 driver too smart

G@C www.gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

MOVING FORWARD (AFTERMATH)

And so, Aftermath was born...
Take all the Pros, leave the Cons; polish and improve from there

Make available in C++ library form

Key differences from the POC:
* Marker insertion uses low-level HW features inside driver

* GPU crash reason provided, { timeout, page-fault, ... }

G@C www.gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

GAME INTEGRATION #1

Before other library calls are made:
*GFSDK_Aftermath DXxx_ Initialize(..)
*NB. Must return ‘GFSDK_Aftermath_Result_Success’

G@C www.gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

GAME INTEGRATION #2

To inject an event:
GFSDK_Aftermath DXxx_SetEventMarker(T, void*, UINT)

G@C www.gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

GAME INTEGRATION #3

On a TDR/hang:
*GFSDK_Aftermath DXxx_GetData(...)
‘Fetches the last GPU-processed event marker

*Can also fetch the execution state for each GPU!

G@C www.gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

GAME INTEGRATION #4

enum GFSDK_Aftermath_ Status

{
GFSDK_Aftermath_Status Active = 0,
GFSDK_Aftermath_Status_Timeout,
GFSDK_Aftermath_Status_ OutOfMemory,
GFSDK_Aftermath_Status PageFault,
GFSDK_Aftermath_Status_Unknown,

¥

G@C www.gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

HOW TO ENABLE YOUR GAME*?

1. Grab the Aftermath package from (available on next driver posting):
https://developer.nvidia.com/nvidia-aftermath

2. Integrate header + DLL into game - compile

3. Rename executable to: “NvAftermath-Enable.exe”

*(to ship in game, contact us)
G@C www.gameworks.nvidia.com SANVIDIA.

gameworks.nvidia.com
https://developer.nvidia.com/nvidia-aftermath

WORKFLOW - TIPS

*Emit regime name as marker:

ID3D12CommandList* const m commandList;
* m marker;

(m_commandList, (*)m marker, (m_marker)+1) ;

* Track currently bound PSO?:

ID3D12CommandList* const m commandList;
ID3D12PipelineState* const m desiredPSO;

m_commandList-> (m desiredPSO) ;

(m_commandList, (*)m desiredPSO,) 2

«Emit CPU backtrace on every/any API call:

ID3D12CommandList* const m commandList;

PVOID stackPtrs[l6] = { 0 };
(1, 16, stackPtrs,) 8

(m_commandList, &stackPtrs[O0], (stackPtrs)) ;

G@C www.gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

ROADMAP

What’s next? (proposals)
« Expand API support
*Push/Pop marker style
*Page-fault? Supply resource identified!

? (feel free to make requests during questions)

NVIDIA working with Microsoft to develop an industry standard

G@C www.gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

QUESTIONS?

Thank you!
\O

G@C www.gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

Ref.

1. https://msdn.microsoft.com/en-gb/windows/uwp/gaming/handling-device-lost-
scenarios

2. https://msdn.microsoft.com/en-
us/library/windows/desktop/bb509553(v=vs.85).aspx

3. http://nvidia.custhelp.com/app/answers/detail/a id/3335/~/tdr-(timeout-
detection-and-recovery)-and-collecting-dump-files

4, https://www.khronos.org/registry/vulkan/specs/1.0/html/vkspec.html#devsandq
ueues-lost-device

5. https://developer.nvidia.com/nvidia-aftermath

G@C www.gameworks.nvidia.com <ANVIDIA. 21

gameworks.nvidia.com
http://nvidia.custhelp.com/app/answers/detail/a_id/3335/~/tdr-(timeout-detection-and-recovery)-and-collecting-dump-files
http://nvidia.custhelp.com/app/answers/detail/a_id/3335/~/tdr-(timeout-detection-and-recovery)-and-collecting-dump-files
http://nvidia.custhelp.com/app/answers/detail/a_id/3335/~/tdr-(timeout-detection-and-recovery)-and-collecting-dump-files
https://www.khronos.org/registry/vulkan/specs/1.0/html/vkspec.html
https://developer.nvidia.com/nvidia-aftermath

