
Alex Dunn, 2nd March 2017

NVIDIA AFTERMATH:
A NEW WAY OF DEBUGGING CRASHES ON THE GPU

2www.gameworks.nvidia.com

NVIDIA AFTERMATH

What is it?

•New tool to diagnose GPU crashes, available on GeForce!

•Coming to D3D for broad availability

•Ability to classify GPU crashes by location and type

•Can be shipped in game – catch crashes “from the wild”

gameworks.nvidia.com

3www.gameworks.nvidia.com

GPU CRASH?

a.k.a. TDR / Hang / Device Removed / Crash/ ?

Annoying  What can we do?

gameworks.nvidia.com

4www.gameworks.nvidia.com

GPU DEBUGGING 101

1st line of defense: MSFT Debug Layer

2nd line of defense: MSFT GPU-Based Validation

Final line of defense:

Preventative

Changes timing

Development-use Only

Limited coverage

- Catches issues that fall through

- Minimal impact

- Shippable

gameworks.nvidia.com

5www.gameworks.nvidia.com

OBSERVATION

Current state of the art in GPU crash debugging isn’t enough

•There’s no simple way to debug crashes after the fact

•Some bugs take months to resolve (really!!)

End-

User
Dev. NVIDIA

gameworks.nvidia.com

6www.gameworks.nvidia.com

DETECTING GPU CRASH #2

1. Crash detected based on error code from API (CPU)

2. Crash happened sometime in the last N frames of GPU commands…

3. CPU call stack is likely a red-herring

CPU Location

GPU Crash

Not useful for debugging!

∞0

Frame

gameworks.nvidia.com

7www.gameworks.nvidia.com

POC IMPLEMENTATION

CPU Location

∞Fn

KO: Increase accuracy of GPU crash location

Plan:

•Game inserts user-defined markers in the command stream

•GPU signals each marker once reached

•Last marker reached indicates GPU crash location

GPU Crash

gameworks.nvidia.com

8www.gameworks.nvidia.com

POC IMPLEMENTATION #2

Implemented exclusively via DX12

• CopyBufferRegion inserts markers on GPU timeline

• Write to single memory location per queue

• Globally shared heap  post-crash accessible data

void SetMarker(char* markerName) {

renamingOffset = (renamingOffset + kMarkerSize) % kRingBufferSize;

const D3D12_RANGE readRange = { 0 };

const D3D12_RANGE writeRange = { renamingOffset, renamingOffset + min(kMarkerSize,strlen(markerName)) };

void* mappedDataBegin = nullptr;

uploadHeap->Map(0, &readRange, &mappedDataBegin);

{

memcpy(((uintptr_t)mappedDataBegin + writeRange.Begin), &markerName[0], writeRange.End);

}

uploadHeap->Unmap(0, &writeRange);

commandList->CopyBufferRegion(sharedHeap, 0, uploadHeap, writeRange.Begin, writeRange.End);

}

gameworks.nvidia.com

9www.gameworks.nvidia.com

sharedHeap Contents:

POC IMPLEMENTATION #3

∞Fn

CPU Location

beginFramebeginGbufferFillbeginDrawOpaqueendDrawOpaquebeginDrawDecalsendDrawDecalsendGbufferFillbeginDrawTransparentendDrawTransparentbeginLightingtiledLighting_Cull

How it looks in practice;

gameworks.nvidia.com

10www.gameworks.nvidia.com

POC IMPLEMENTATION #4

Case Study: IO Interactive

• IO Interactive facing very stubborn GPU crash

• Issue was open for >2 months, main focus of weekly meetings with NVIDIA

•With POC, issue was identified and fixed in a single afternoon

•“This tool is excellent” 

Conclusion:

•Discovering where a hang occurs in GPU timeline is valuable & actionable

gameworks.nvidia.com

11www.gameworks.nvidia.com

POC (MINI) POST-MORTEM

Pros:

•Simple API  simple to integrate

•Enabled classification of GPU crashes

• Insight into where GPU crashes occur

Cons:

•GPU copies are super slow for this purpose

•Timing related behavior altered

•Separate process for marker read-back

•Serializes order of GPU work (wait-for-idle)

•Only supports DX12 – DX11 driver too smart

gameworks.nvidia.com

12www.gameworks.nvidia.com

MOVING FORWARD (AFTERMATH)

And so, Aftermath was born…

Take all the Pros, leave the Cons; polish and improve from there

Make available in C++ library form

Key differences from the POC:

•Marker insertion uses low-level HW features inside driver

•GPU crash reason provided, { timeout, page-fault, … }

gameworks.nvidia.com

13www.gameworks.nvidia.com

GAME INTEGRATION #1

Before other library calls are made:

•GFSDK_Aftermath_DXxx_Initialize(…)

•NB. Must return ‘GFSDK_Aftermath_Result_Success’

gameworks.nvidia.com

14www.gameworks.nvidia.com

GAME INTEGRATION #2

To inject an event:

•GFSDK_Aftermath_DXxx_SetEventMarker(T*, void*, UINT)

gameworks.nvidia.com

15www.gameworks.nvidia.com

GAME INTEGRATION #3

On a TDR/hang:

•GFSDK_Aftermath_DXxx_GetData(…)

•Fetches the last GPU-processed event marker

•Can also fetch the execution state for each GPU!

gameworks.nvidia.com

16www.gameworks.nvidia.com

GAME INTEGRATION #4

enum GFSDK_Aftermath_Status

{

GFSDK_Aftermath_Status_Active = 0,

GFSDK_Aftermath_Status_Timeout,

GFSDK_Aftermath_Status_OutOfMemory,

GFSDK_Aftermath_Status_PageFault,

GFSDK_Aftermath_Status_Unknown,

};

gameworks.nvidia.com

17www.gameworks.nvidia.com

HOW TO ENABLE YOUR GAME*?

1. Grab the Aftermath package from (available on next driver posting):
https://developer.nvidia.com/nvidia-aftermath

2. Integrate header + DLL into game  compile

3. Rename executable to: “NvAftermath-Enable.exe”

*(to ship in game, contact us)

gameworks.nvidia.com
https://developer.nvidia.com/nvidia-aftermath

18www.gameworks.nvidia.com

WORKFLOW - TIPS

•Emit regime name as marker:

•Track currently bound PSO?:

•Emit CPU backtrace on every/any API call:

extern ID3D12CommandList* const m_commandList;

extern ID3D12PipelineState* const m_desiredPSO;

m_commandList->SetPipelineState(m_desiredPSO);

GFSDK_Dx12_SetEventMarker(m_commandList, (void*)m_desiredPSO, 0);

extern ID3D12CommandList* const m_commandList;

PVOID stackPtrs[16] = { 0 };

CaptureStackBackTrace(1, 16, stackPtrs, NULL);

GFSDK_Dx12_SetEventMarker(m_commandList, &stackPtrs[0], sizeof(stackPtrs));

extern ID3D12CommandList* const m_commandList;

extern char* m_marker;

GFSDK_Dx12_SetEventMarker(m_commandList, (void*)m_marker, strlen(m_marker)+1);

gameworks.nvidia.com

19www.gameworks.nvidia.com

ROADMAP

What’s next? (proposals)

•Expand API support

•Push/Pop marker style

•Page-fault? Supply resource identified!

• ? (feel free to make requests during questions)

NVIDIA working with Microsoft to develop an industry standard

gameworks.nvidia.com

20www.gameworks.nvidia.com

QUESTIONS?

Thank you!

\0

gameworks.nvidia.com

21www.gameworks.nvidia.com

Ref.

1. https://msdn.microsoft.com/en-gb/windows/uwp/gaming/handling-device-lost-
scenarios

2. https://msdn.microsoft.com/en-
us/library/windows/desktop/bb509553(v=vs.85).aspx

3. http://nvidia.custhelp.com/app/answers/detail/a_id/3335/~/tdr-(timeout-
detection-and-recovery)-and-collecting-dump-files

4. https://www.khronos.org/registry/vulkan/specs/1.0/html/vkspec.html#devsandq
ueues-lost-device

5. https://developer.nvidia.com/nvidia-aftermath

gameworks.nvidia.com
http://nvidia.custhelp.com/app/answers/detail/a_id/3335/~/tdr-(timeout-detection-and-recovery)-and-collecting-dump-files
http://nvidia.custhelp.com/app/answers/detail/a_id/3335/~/tdr-(timeout-detection-and-recovery)-and-collecting-dump-files
http://nvidia.custhelp.com/app/answers/detail/a_id/3335/~/tdr-(timeout-detection-and-recovery)-and-collecting-dump-files
https://www.khronos.org/registry/vulkan/specs/1.0/html/vkspec.html
https://developer.nvidia.com/nvidia-aftermath

