
Booth #223 - South Hall

www.nvidia.com/GDC

Louis Bavoil, Principal Engineer

Fixing the Hyperdrive:
Maximizing Rendering Performance on NVIDIA GPUs

2

SM = Streaming Multiprocessor

SM TEX L2 DRAM

Full-Screen Pixel Shader

TEX = Texture unit

L2 = Level 2 cache

DRAM = physical video-memory unit

CROP

CROP = Color ROP

3

SM TEX L2 DRAM

CROP

“SOL%” = % of Peak Performance

Speed Of Light (SOL) Metrics

Top SOL%s [SM:95% | TEX:72% | L2:72% | DRAM:34% | CROP:5%]

4

Capturing a Frame from a DX App
Using Nsight Graphics 1.0

5

Press CTRL-Z, then Space

6

7

8

9

10

11

12

13

14

Press CTRL-Z, then Space

15

Profiler Result for the Whole Frame

NOTE: The profiler always locks the GPU Core Clock frequency (for most deterministic results).

GPU Frame Time: 3.15 ms
Measured using D3D timestamp queries

16

Profiler Result for the Whole Frame

“DrawCoarseAOPS” = 49.9% of the frame

17

Profiling a PerfMarker Range…

Click

18

19

The Top SOL Units

21

The Peak-Perf% Analysis Method

For each “Top SOL%” unit:

1. If SOL% > 80%  (A) try removing work from this unit

• If SM: By opportunistically skipping instructions using branches (or early depth test)

• If SM: By moving math instructions to lookup tables

• If TEX: By moving structured-buffer loads to constant-buffer loads, etc.

2. If SOL% < 60%  (B) try increasing the SOL% of this unit

• By removing “idle cycles” (GPU unit is not doing any work for a % of the time)

• By removing “stall cycles” (GPU unit has internal inefficiencies)

• By avoiding “slow paths” if possible (e.g. 32-bit index buffers, and FP32x4 textures)

3. If SOL% in [60,80], do both (A) and (B)

22

Range Profiling & Async Compute

 For DX12, Nsight Frame Captures flatten all async COMPUTE queues

to the main DIRECT queue

 For understanding overlaps of async compute work with graphics

work, Nsight GPU Trace can be used

23

Example DX11 Workload:

Voxelization using UAV Atomics

GPU: GTX 1080

24

CPU Limited?

GPU Idle: 0.0%
 Not CPU limited at all

25

Top SOLs [VPC:25.0% | SM:21.1% | L2:20.6%]

“Top SOLs”

VPC = ViewPort Culling unit
SM = Streaming Multiprocessor
L2 = Level 2 Cache

26

SM Active: 59.5%

“SM Active”: % of the SM cycles with at least one active warp

“SM Active”

27

Draw Call Count: 100

Wait For Idle (WFI) Count: 103

28

DX11 Driver Behavior
By default: Serialize Draw calls with bound UAV in common

Draw call #1

using UAV_0

GPU Wait For Idle (WFI)

Draw call #2

using UAV_0

29

DX11 Driver Behavior
Optimized: Concurrent Draw Calls

NvAPI_D3D11_BeginUAVOverlap NvAPI_D3D11_EndUAVOverlap

Draw call #1

using UAV_0

Draw call #2

using UAV_0

30

BEFORE AFTER RATIO

WFI Count 103 3

Top SOLs

VPC:25.0%

SM:21.1%

L2:20.6%

VPC:52.3%

SM:44.3%

L2:42.6%

VPC: 2.1x

SM: 2.1x

L2: 2.1x

SM Active% 59.1% 95.1% 1.6x

GPU Elapsed Time 0.69 ms 0.38 ms 1.8x Gain

UAV-Overlap Optimization
Add NvAPI_D3D11_{Begin,End}UAVOverlap

31

For each “Top SOL%” unit:

1. If SOL% > 80%  (A) try removing work from this unit

2. If SOL% < 60%  (B) try increasing the SOL% of this unit

• By removing “idle cycles” (GPU unit is not doing any work for a % of the time)

• By removing “stall cycles” (GPU unit has internal inefficiencies)

• By avoiding “slow paths” if possible (e.g. avoiding 32-bit index buffers, and avoiding

FP32x4 texture formats).

3. If SOL% in [60,80], do both (A) and (B)

The Peak-Perf% Analysis Method
BEFORE: Top SOLs: [VPC:25.0% | SM:21.1% | L2:20.6%]
AFTER: Top SOLs: [VPC:52.3% | SM:44.3% | L2:42.6%]

32

Example Workload:

Drawing Tiny Triangles

GPU: GTX 1080

33

Index Buffer Format = R32_UINT
With all indices >= USHORT_MAX replaced with 0

API Primitive Count: 22,657,500
Shaded Pixels: 0

Top SOLs [PD:64.1% | VPC:46.7% | DRAM:36.2%]

DRAM Read Utilization: 35.9%

PD = Primitive Distributor unit
VPC = ViewPort Culling unit
“DRAM Read Utilization”: % of cycles that a DRAM read request is active

GPU Idle: 0.0%

35

BEFORE AFTER RATIO

Top SOLs

PD:64.1%

VPC:46.7%

DRAM:36.2%

PD:80.5%

VPC:58.7%

DRAM:28.5%

PD:1.3x

VPC:1.3x

DRAM: 0.8x

DRAM Read Utilization 36% 28% 0.78x

GPU Elapsed Time 5.09 ms 2.37 ms 2.1x Gain

Index-Buffer Format Optimization
32->16 bits per index

36

For each “Top SOL%” unit:

1. If SOL% > 80%  (A) try removing work from this unit

2. If SOL% < 60%  (B) try increasing the SOL% of this unit

• By removing “idle cycles” (GPU unit is not doing any work for a % of the time)

• By removing “stall cycles” (GPU unit has internal inefficiencies)

• By avoiding “slow paths” if possible (e.g. 32-bit index buffers, and FP32x4 textures)

3. If SOL% in [60,80], do both (A) and (B)

The Peak-Perf% Analysis Method
BEFORE: Top SOLs: [PD:64.1% | VPC:46.7% | DRAM:36.2%]
AFTER: Top SOLs: [PD:80.5% | VPC:58.7% | DRAM:28.5%]

37

Example Workload:

Light-Tile Culling Compute Shader

GPU: GTX 1080

38

Top SOLs [SM:41.9% | TEX:3.4% | L2:1.8%]

Light Tile Culling CS
Thread-group size = 64

“SM Issue Utilization” < 60% AND “SM Warp Stall Barrier” > 20%

 SM perf is limited by synchronization stalls from

GroupMemoryBarrierWithGroupSync() instructions

SM Warp Stall Barrier: % of active warps that were stalled waiting for sibling warps at a CTA barrier

SM Warp Stall Barrier: 43.2%

SM Issue Utilization: 42.6%

SM Issue Utilization: The % of SM active cycles a SM scheduler issued at least one instruction

40

GroupMemoryBarrierWithGroupSync() GroupMemoryBarrierWithGroupSync()

Elapsed
Cycles

1 Warp (32 Threads)

for (uint i = groupIndex;
i < lightCount;
i += groupSize)

{
CullLight(i,…)

}

for (uint i = groupIndex;
i < lightCount;
i += groupSize)…

GroupMemoryBarrierWithGroupSync()

GroupMemoryBarrierWithGroupSync()

Thread Group

BEFORE: 2-Warp Thread Groups

1 Warp (32 Threads)

41

GroupMemoryBarrierWithGroupSync()

1 Warp (32 Threads)

GroupMemoryBarrierWithGroupSync()

for (uint i = groupIndex;
i < lightCount;
i += groupSize)

{
CullLight(i,…)

}

AFTER: 1-Warp Thread Groups

Elapsed
Cycles

42

GroupMemoryBarrierWithGroupSync()

1 Warp (32 Threads)

GroupMemoryBarrierWithGroupSync()

for (uint i = groupIndex;
i < lightCount;
i += groupSize)

{
CullLight(i,…)

}

AFTER: 1-Warp Thread Groups

Elapsed
Cycles

For single-warp thread groups, barrier instructions are free on NVIDIA GPUs.

43

BEFORE AFTER RATIO

Top SOL SM:41.9% SM:73.7% SM:1.76x

SM Issue Utilization 42.6% 76.6% 1.80x

SM Warp Stall on

Barriers
43.2% 0.0% 0.0x

SM Occupancy

(Active Warps)
34.3 31.2 0.91x

GPU Elapsed Time 1.10 ms 0.33 ms 3.3x Gain

Thread-Group Size Reduction:
64 threads -> 32 threads

44

For each “Top SOL%” unit (from high to low SOL%):

1. If SOL% > 80%  (A) try removing work from this unit

2. If SOL% < 60%  (B) try increasing the SOL% of this unit

• By removing “idle cycles” (GPU unit is not doing any work for a % of the time)

• By removing “stall cycles”: SM Warp Stalls on Shared-Memory Barriers

• By avoiding “slow paths” if possible (e.g. 32-bit index buffers, and FP32x4 textures)

3. If SOL% in [60,80], do both (A) and (B)

The Peak-Perf% Analysis Method
BEFORE: Top SOLs: [SM:41.9% | TEX:3.4% | L2:1.8%]
AFTER: Top SOLs: [SM:73.7% | TEX:4.9% | L2:4.2%]

45

Example Workload:

Ray-Marched SSAO

46

Full-Screen Pixel Shader
with per-pixel jittering of ray directions

1440p, 8 rays per pixel, stride=4 pixels GPU: GTX 1080

47

Top SOLs [L2:80.3% | SM:56.0% | TEX:37.0% | DRAM:1.6% | CROP:0.5%]

Ray-Marched SSAO
Full-Screen Pixel Shader

TEX Hit Rate: 67.0%
 Workload is L2 bandwidth limited due to poor TEX hit rate

48

Ray-Marched SSAO
Full-Screen Pixel Shader

SM Issue Utilization: The % of SM active cycles a SM scheduler issued at least one instruction

SM Issue Utilization: 55.7%

Top SOLs [L2:80.3% | SM:56.0% | TEX:37.0% | DRAM:1.6% | CROP:0.5%]

49

Ray-Marched SSAO
Full-Screen Pixel Shader

SM Issue Utilization: 55.7%

Top SOLs [L2:80.3% | SM:56.0% | TEX:37.0% | DRAM:1.6% | CROP:0.5%]

“SM Issue Utilization” < 60% AND “SM Warp Stall Long Scoreboard” > 20%

 SM perf is TEX-latency limited

SM Warp Stall Long Scoreboard: 47.9%

“SM Warp Stall Long Scoreboard”:
% of active warps that were stalled waiting for a scoreboard dependency on a TEX operation

51

52

53

54

55

56

Full-Screen Pixel Shader
AO GPU Time: 6.77 ms

57

Interleaved Rendering (3 Steps)
AO GPU Time: 0.10 + 5.04 + 0.08 = 5.22 ms [27% gain]

58

AO KERNEL BEFORE AFTER RATIO

Top SOLs
L2:80.3%

SM:56.0%

TEX:37.0%

L2:11.3%

SM:78.8%

TEX:32.4%

L2:0.14x

SM:1.4x

TEX:0.9x

TEX Hit Rate 67% 93% 1.4x

SM Issue Utilization 56% 73% 1.3x

SM Warp Stall

Long Scoreboard
48% 28% 0.6x

Interleaved Rendering Optimization

61

do

{
// Fetch Sample_1
// Fetch Sample_2
// Calculate RayXYZ_1
// Advance Ray

// Calculate RayXYZ_2
// Advance Ray

} while (

...

);

Before
do

{

// Fetch Sample_1
// Calculate RayXYZ_1
// Advance Ray

} while (

...

);

2x Partial Loop Unrolling

After

62

BEFORE AFTER RATIO

Top SOLs

SM:78.8%

TEX:32.4%

L2:11.3%

SM:88.6%

TEX:37.4%

L2:9.9%

SM:1.1x

TEX:1.2x

L2:0.9x

SM Issue Utilization 73% 84% 1.15x

SM Warp Stall on

Long Scoreboard
28% 12% 0.43x

SM Occupancy

(Active Warps)
39.0 33.8 0.87x

GPU Elapsed Time 5.04 ms 4.53 ms 11% Gain

2x Partial Loop Unrolling

63

For each “Top SOL%” unit:

1. If SOL% > 80%  (A) try removing work from this unit

• Reduce the number of TEX->L2 requests by improving the TEX hit rate

2. If SOL% < 60%  (B) try increasing the SOL% of this unit

• By removing “idle cycles” (GPU unit is not doing any work for a % of the time)

• By removing “stall cycles” (GPU unit has internal inefficiencies)

• By avoiding “slow paths” if possible (e.g. 32-bit index buffers, and FP32x4 textures)

3. If SOL% in [60,80], do both (A) and (B)

The Peak-Perf% Analysis Method
BEFORE: Top SOLs: [L2:80.3% | SM:56.0% | TEX:37.0%]
AFTER: Top SOLs: [L2:9.9% | SM:88.6% | TEX:37.4%]

64

For each “Top SOL%” unit:

1. If SOL% > 80%  (A) try removing work from this unit

2. If SOL% < 60%  (B) try increasing the SOL% of this unit

• By removing “idle cycles” (GPU unit is not doing any work for a % of the time)

• By removing “stall cycles”: SM Warp Stalls on TEX dependencies

• By avoiding “slow paths” if possible (e.g. 32-bit index buffers, and FP32x4 textures)

3. If SOL% in [60,80], do both (A) and (B)

The Peak-Perf% Analysis Method
BEFORE: Top SOLs: [L2:80.3% | SM:56.0% | TEX:37.0%]
AFTER: Top SOLs: [L2:9.9% | SM:88.6% | TEX:37.4%]

65

DX12 Advanced Topic:

Binding SRV Descriptors

GPU: GTX 1080

66

The TSL1 & TSL2 Caches

SRV descriptor contains texture metadata (type, dimensions, format, etc)

TSL2

(L1.5 cache)
SM L2

TEX

(+TSL1)

SRV Slot +
Sampler Slot +

Tex Coords

If SRV desc or
sampler desc
not in TEX/L1

If SRV desc or
sampler desc
not in TSL2

67

68

Typical DX12 SRV Binding Pattern

SRV 1

SRV 2

SRV 3

SRV 1

SRV 7

SRV 3

Draw call 1

Draw call 2

2 Draw Calls with same Root Signature

69

Shader-Visible
SRV Descriptor Heap

Non-Shader-Visible
SRV Descriptor Heap

[0] SRV 1

[1] SRV 2

[2] SRV 3

SRV 1

SRV 2

SRV 3

SRV 4

SRV 5

SRV 6

SRV 7

[3] SRV 1

[4] SRV 7

[5] SRV 3

Typical DX12 SRV Binding Pattern

SetGraphicsRootDescriptorTable

SRV 1

SRV 2

SRV 3

SRV 1

SRV 7

SRV 3

CopyDescriptorsSimple

70

[0] SRV 1

[1] SRV 2

[2] SRV 3

SRV 1

SRV 2

SRV 3

SRV 4

SRV 5

SRV 6

SRV 7

[3] SRV 1

[4] SRV 7

[5] SRV 3

The Problem: Redundant Heap Entries

SetGraphicsRootDescriptorTable

SRV 1

SRV 2

SRV 3

SRV 1

SRV 7

SRV 3

TSL1 & TSL2 caches use heap indices as tags

 Redundant entries in the shader-visible heap  TSL1 & TSL2 cache thrashing 

CopyDescriptorsSimple

71

CopyDescriptorsSimple

[0] SRV 1

[1] SRV 2

[2] SRV 3

SRV 1

SRV 2

SRV 3

SRV 4

SRV 5

SRV 6

SRV 7

[3] SRV 7

Solution #1: Split SRV Ranges

SetGraphicsRootDescriptorTable

SRV 1

SRV 2

SRV 3

SRV 1

SRV 7

SRV 3

73

SRV 1

SRV 2

SRV 3

SRV 4

SRV 5

SRV 6

SRV 7

Solution #2: Shader SRV Indexing
SetGraphicsRootDescriptorTable

Shader-Visible
SRV Descriptor Heap

SRV 1

SRV 2

SRV 3

SRV 4

SRV 5

SRV 6

SRV 7

+ Dynamically index SRV descriptor in shaders
using per-draw-call indices stored in a Root CBV

74

Split SRV Ranges vs Shader SRV Indexing

 Shader SRV Indexing

o  Unique SRVs in shader-visible descriptor heap

o  No CopyDescriptorsSimple calls used

o  Slight SM overhead (extra registers & instructions injected by driver)

 Split SRV Ranges

o  CopyDescriptorsSimple CPU overhead

o  SetGraphicsRootDescriptorTable CPU & GPU overhead

o  Can use the same shader byte code on DX12 & DX11

75

DX12 Advanced Topic:

Pixel Shader Barriers

GPU: GTX 1080

76

Pixel Shader Barriers (PSBs)

 PSB == lightweight WFI (Wait For Idle) for PS-to-PS dependencies.

o Hardware command available on Maxwell and beyond.

o Used automatically by our driver on DX11.

 On DX12, used in ResourceBarrier Transition calls with:

o StateBefore = D3D12_RESOURCE_STATE_RENDER_TARGET

o StateAfter = D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE

 All other transitions map to full-pipeline WFIs.

79

80

POST-PROCESSING
CHAIN

BEFORE AFTER RATIO

Top SOLs
TEX:35.4%

L2:33.3%

SM:29.9%

TEX:40.5%

L2:38.3%

DRAM:36.1%

TEX:1.1x

L2:1.2x

DRAM:1.2x

Wait For Idle

Count
44 13

Pixel Shader Barrier

Count
0 31

GPU Elapsed Time 0.39 ms 0.29 ms 26% Gain

ResourceBarrier Flag Optimization

82

Conclusion

 Nsight Graphics 1.0

o Makes it easier to export frames to C++ and build them as EXE

o Exposes powerful hardware metrics in the Range Profiler

 Blog post for more details:

o “The Peak-Performance Analysis Method for Optimizing Any GPU Workload”

 Demo of Nsight Graphics at NVIDIA Expo Booth

https://devblogs.nvidia.com/the-peak-performance-analysis-method-for-optimizing-any-gpu-workload/

83

Questions?

Louis Bavoil
lbavoil@nvidia.com

