
Booth #223 - South Hall

www.nvidia.com/GDC

Louis Bavoil, Principal Engineer

Fixing the Hyperdrive:
Maximizing Rendering Performance on NVIDIA GPUs

2

SM = Streaming Multiprocessor

SM TEX L2 DRAM

Full-Screen Pixel Shader

TEX = Texture unit

L2 = Level 2 cache

DRAM = physical video-memory unit

CROP

CROP = Color ROP

3

SM TEX L2 DRAM

CROP

“SOL%” = % of Peak Performance

Speed Of Light (SOL) Metrics

Top SOL%s [SM:95% | TEX:72% | L2:72% | DRAM:34% | CROP:5%]

4

Capturing a Frame from a DX App
Using Nsight Graphics 1.0

5

Press CTRL-Z, then Space

6

7

8

9

10

11

12

13

14

Press CTRL-Z, then Space

15

Profiler Result for the Whole Frame

NOTE: The profiler always locks the GPU Core Clock frequency (for most deterministic results).

GPU Frame Time: 3.15 ms
Measured using D3D timestamp queries

16

Profiler Result for the Whole Frame

“DrawCoarseAOPS” = 49.9% of the frame

17

Profiling a PerfMarker Range…

Click

18

19

The Top SOL Units

21

The Peak-Perf% Analysis Method

For each “Top SOL%” unit:

1. If SOL% > 80% (A) try removing work from this unit

• If SM: By opportunistically skipping instructions using branches (or early depth test)

• If SM: By moving math instructions to lookup tables

• If TEX: By moving structured-buffer loads to constant-buffer loads, etc.

2. If SOL% < 60% (B) try increasing the SOL% of this unit

• By removing “idle cycles” (GPU unit is not doing any work for a % of the time)

• By removing “stall cycles” (GPU unit has internal inefficiencies)

• By avoiding “slow paths” if possible (e.g. 32-bit index buffers, and FP32x4 textures)

3. If SOL% in [60,80], do both (A) and (B)

22

Range Profiling & Async Compute

 For DX12, Nsight Frame Captures flatten all async COMPUTE queues

to the main DIRECT queue

 For understanding overlaps of async compute work with graphics

work, Nsight GPU Trace can be used

23

Example DX11 Workload:

Voxelization using UAV Atomics

GPU: GTX 1080

24

CPU Limited?

GPU Idle: 0.0%
 Not CPU limited at all

25

Top SOLs [VPC:25.0% | SM:21.1% | L2:20.6%]

“Top SOLs”

VPC = ViewPort Culling unit
SM = Streaming Multiprocessor
L2 = Level 2 Cache

26

SM Active: 59.5%

“SM Active”: % of the SM cycles with at least one active warp

“SM Active”

27

Draw Call Count: 100

Wait For Idle (WFI) Count: 103

28

DX11 Driver Behavior
By default: Serialize Draw calls with bound UAV in common

Draw call #1

using UAV_0

GPU Wait For Idle (WFI)

Draw call #2

using UAV_0

29

DX11 Driver Behavior
Optimized: Concurrent Draw Calls

NvAPI_D3D11_BeginUAVOverlap NvAPI_D3D11_EndUAVOverlap

Draw call #1

using UAV_0

Draw call #2

using UAV_0

30

BEFORE AFTER RATIO

WFI Count 103 3

Top SOLs

VPC:25.0%

SM:21.1%

L2:20.6%

VPC:52.3%

SM:44.3%

L2:42.6%

VPC: 2.1x

SM: 2.1x

L2: 2.1x

SM Active% 59.1% 95.1% 1.6x

GPU Elapsed Time 0.69 ms 0.38 ms 1.8x Gain

UAV-Overlap Optimization
Add NvAPI_D3D11_{Begin,End}UAVOverlap

31

For each “Top SOL%” unit:

1. If SOL% > 80% (A) try removing work from this unit

2. If SOL% < 60% (B) try increasing the SOL% of this unit

• By removing “idle cycles” (GPU unit is not doing any work for a % of the time)

• By removing “stall cycles” (GPU unit has internal inefficiencies)

• By avoiding “slow paths” if possible (e.g. avoiding 32-bit index buffers, and avoiding

FP32x4 texture formats).

3. If SOL% in [60,80], do both (A) and (B)

The Peak-Perf% Analysis Method
BEFORE: Top SOLs: [VPC:25.0% | SM:21.1% | L2:20.6%]
AFTER: Top SOLs: [VPC:52.3% | SM:44.3% | L2:42.6%]

32

Example Workload:

Drawing Tiny Triangles

GPU: GTX 1080

33

Index Buffer Format = R32_UINT
With all indices >= USHORT_MAX replaced with 0

API Primitive Count: 22,657,500
Shaded Pixels: 0

Top SOLs [PD:64.1% | VPC:46.7% | DRAM:36.2%]

DRAM Read Utilization: 35.9%

PD = Primitive Distributor unit
VPC = ViewPort Culling unit
“DRAM Read Utilization”: % of cycles that a DRAM read request is active

GPU Idle: 0.0%

35

BEFORE AFTER RATIO

Top SOLs

PD:64.1%

VPC:46.7%

DRAM:36.2%

PD:80.5%

VPC:58.7%

DRAM:28.5%

PD:1.3x

VPC:1.3x

DRAM: 0.8x

DRAM Read Utilization 36% 28% 0.78x

GPU Elapsed Time 5.09 ms 2.37 ms 2.1x Gain

Index-Buffer Format Optimization
32->16 bits per index

36

For each “Top SOL%” unit:

1. If SOL% > 80% (A) try removing work from this unit

2. If SOL% < 60% (B) try increasing the SOL% of this unit

• By removing “idle cycles” (GPU unit is not doing any work for a % of the time)

• By removing “stall cycles” (GPU unit has internal inefficiencies)

• By avoiding “slow paths” if possible (e.g. 32-bit index buffers, and FP32x4 textures)

3. If SOL% in [60,80], do both (A) and (B)

The Peak-Perf% Analysis Method
BEFORE: Top SOLs: [PD:64.1% | VPC:46.7% | DRAM:36.2%]
AFTER: Top SOLs: [PD:80.5% | VPC:58.7% | DRAM:28.5%]

37

Example Workload:

Light-Tile Culling Compute Shader

GPU: GTX 1080

38

Top SOLs [SM:41.9% | TEX:3.4% | L2:1.8%]

Light Tile Culling CS
Thread-group size = 64

“SM Issue Utilization” < 60% AND “SM Warp Stall Barrier” > 20%

 SM perf is limited by synchronization stalls from

GroupMemoryBarrierWithGroupSync() instructions

SM Warp Stall Barrier: % of active warps that were stalled waiting for sibling warps at a CTA barrier

SM Warp Stall Barrier: 43.2%

SM Issue Utilization: 42.6%

SM Issue Utilization: The % of SM active cycles a SM scheduler issued at least one instruction

40

GroupMemoryBarrierWithGroupSync() GroupMemoryBarrierWithGroupSync()

Elapsed
Cycles

1 Warp (32 Threads)

for (uint i = groupIndex;
i < lightCount;
i += groupSize)

{
CullLight(i,…)

}

for (uint i = groupIndex;
i < lightCount;
i += groupSize)…

GroupMemoryBarrierWithGroupSync()

GroupMemoryBarrierWithGroupSync()

Thread Group

BEFORE: 2-Warp Thread Groups

1 Warp (32 Threads)

41

GroupMemoryBarrierWithGroupSync()

1 Warp (32 Threads)

GroupMemoryBarrierWithGroupSync()

for (uint i = groupIndex;
i < lightCount;
i += groupSize)

{
CullLight(i,…)

}

AFTER: 1-Warp Thread Groups

Elapsed
Cycles

42

GroupMemoryBarrierWithGroupSync()

1 Warp (32 Threads)

GroupMemoryBarrierWithGroupSync()

for (uint i = groupIndex;
i < lightCount;
i += groupSize)

{
CullLight(i,…)

}

AFTER: 1-Warp Thread Groups

Elapsed
Cycles

For single-warp thread groups, barrier instructions are free on NVIDIA GPUs.

43

BEFORE AFTER RATIO

Top SOL SM:41.9% SM:73.7% SM:1.76x

SM Issue Utilization 42.6% 76.6% 1.80x

SM Warp Stall on

Barriers
43.2% 0.0% 0.0x

SM Occupancy

(Active Warps)
34.3 31.2 0.91x

GPU Elapsed Time 1.10 ms 0.33 ms 3.3x Gain

Thread-Group Size Reduction:
64 threads -> 32 threads

44

For each “Top SOL%” unit (from high to low SOL%):

1. If SOL% > 80% (A) try removing work from this unit

2. If SOL% < 60% (B) try increasing the SOL% of this unit

• By removing “idle cycles” (GPU unit is not doing any work for a % of the time)

• By removing “stall cycles”: SM Warp Stalls on Shared-Memory Barriers

• By avoiding “slow paths” if possible (e.g. 32-bit index buffers, and FP32x4 textures)

3. If SOL% in [60,80], do both (A) and (B)

The Peak-Perf% Analysis Method
BEFORE: Top SOLs: [SM:41.9% | TEX:3.4% | L2:1.8%]
AFTER: Top SOLs: [SM:73.7% | TEX:4.9% | L2:4.2%]

45

Example Workload:

Ray-Marched SSAO

46

Full-Screen Pixel Shader
with per-pixel jittering of ray directions

1440p, 8 rays per pixel, stride=4 pixels GPU: GTX 1080

47

Top SOLs [L2:80.3% | SM:56.0% | TEX:37.0% | DRAM:1.6% | CROP:0.5%]

Ray-Marched SSAO
Full-Screen Pixel Shader

TEX Hit Rate: 67.0%
 Workload is L2 bandwidth limited due to poor TEX hit rate

48

Ray-Marched SSAO
Full-Screen Pixel Shader

SM Issue Utilization: The % of SM active cycles a SM scheduler issued at least one instruction

SM Issue Utilization: 55.7%

Top SOLs [L2:80.3% | SM:56.0% | TEX:37.0% | DRAM:1.6% | CROP:0.5%]

49

Ray-Marched SSAO
Full-Screen Pixel Shader

SM Issue Utilization: 55.7%

Top SOLs [L2:80.3% | SM:56.0% | TEX:37.0% | DRAM:1.6% | CROP:0.5%]

“SM Issue Utilization” < 60% AND “SM Warp Stall Long Scoreboard” > 20%

 SM perf is TEX-latency limited

SM Warp Stall Long Scoreboard: 47.9%

“SM Warp Stall Long Scoreboard”:
% of active warps that were stalled waiting for a scoreboard dependency on a TEX operation

51

52

53

54

55

56

Full-Screen Pixel Shader
AO GPU Time: 6.77 ms

57

Interleaved Rendering (3 Steps)
AO GPU Time: 0.10 + 5.04 + 0.08 = 5.22 ms [27% gain]

58

AO KERNEL BEFORE AFTER RATIO

Top SOLs
L2:80.3%

SM:56.0%

TEX:37.0%

L2:11.3%

SM:78.8%

TEX:32.4%

L2:0.14x

SM:1.4x

TEX:0.9x

TEX Hit Rate 67% 93% 1.4x

SM Issue Utilization 56% 73% 1.3x

SM Warp Stall

Long Scoreboard
48% 28% 0.6x

Interleaved Rendering Optimization

61

do

{
// Fetch Sample_1
// Fetch Sample_2
// Calculate RayXYZ_1
// Advance Ray

// Calculate RayXYZ_2
// Advance Ray

} while (

...

);

Before
do

{

// Fetch Sample_1
// Calculate RayXYZ_1
// Advance Ray

} while (

...

);

2x Partial Loop Unrolling

After

62

BEFORE AFTER RATIO

Top SOLs

SM:78.8%

TEX:32.4%

L2:11.3%

SM:88.6%

TEX:37.4%

L2:9.9%

SM:1.1x

TEX:1.2x

L2:0.9x

SM Issue Utilization 73% 84% 1.15x

SM Warp Stall on

Long Scoreboard
28% 12% 0.43x

SM Occupancy

(Active Warps)
39.0 33.8 0.87x

GPU Elapsed Time 5.04 ms 4.53 ms 11% Gain

2x Partial Loop Unrolling

63

For each “Top SOL%” unit:

1. If SOL% > 80% (A) try removing work from this unit

• Reduce the number of TEX->L2 requests by improving the TEX hit rate

2. If SOL% < 60% (B) try increasing the SOL% of this unit

• By removing “idle cycles” (GPU unit is not doing any work for a % of the time)

• By removing “stall cycles” (GPU unit has internal inefficiencies)

• By avoiding “slow paths” if possible (e.g. 32-bit index buffers, and FP32x4 textures)

3. If SOL% in [60,80], do both (A) and (B)

The Peak-Perf% Analysis Method
BEFORE: Top SOLs: [L2:80.3% | SM:56.0% | TEX:37.0%]
AFTER: Top SOLs: [L2:9.9% | SM:88.6% | TEX:37.4%]

64

For each “Top SOL%” unit:

1. If SOL% > 80% (A) try removing work from this unit

2. If SOL% < 60% (B) try increasing the SOL% of this unit

• By removing “idle cycles” (GPU unit is not doing any work for a % of the time)

• By removing “stall cycles”: SM Warp Stalls on TEX dependencies

• By avoiding “slow paths” if possible (e.g. 32-bit index buffers, and FP32x4 textures)

3. If SOL% in [60,80], do both (A) and (B)

The Peak-Perf% Analysis Method
BEFORE: Top SOLs: [L2:80.3% | SM:56.0% | TEX:37.0%]
AFTER: Top SOLs: [L2:9.9% | SM:88.6% | TEX:37.4%]

65

DX12 Advanced Topic:

Binding SRV Descriptors

GPU: GTX 1080

66

The TSL1 & TSL2 Caches

SRV descriptor contains texture metadata (type, dimensions, format, etc)

TSL2

(L1.5 cache)
SM L2

TEX

(+TSL1)

SRV Slot +
Sampler Slot +

Tex Coords

If SRV desc or
sampler desc
not in TEX/L1

If SRV desc or
sampler desc
not in TSL2

67

68

Typical DX12 SRV Binding Pattern

SRV 1

SRV 2

SRV 3

SRV 1

SRV 7

SRV 3

Draw call 1

Draw call 2

2 Draw Calls with same Root Signature

69

Shader-Visible
SRV Descriptor Heap

Non-Shader-Visible
SRV Descriptor Heap

[0] SRV 1

[1] SRV 2

[2] SRV 3

SRV 1

SRV 2

SRV 3

SRV 4

SRV 5

SRV 6

SRV 7

[3] SRV 1

[4] SRV 7

[5] SRV 3

Typical DX12 SRV Binding Pattern

SetGraphicsRootDescriptorTable

SRV 1

SRV 2

SRV 3

SRV 1

SRV 7

SRV 3

CopyDescriptorsSimple

70

[0] SRV 1

[1] SRV 2

[2] SRV 3

SRV 1

SRV 2

SRV 3

SRV 4

SRV 5

SRV 6

SRV 7

[3] SRV 1

[4] SRV 7

[5] SRV 3

The Problem: Redundant Heap Entries

SetGraphicsRootDescriptorTable

SRV 1

SRV 2

SRV 3

SRV 1

SRV 7

SRV 3

TSL1 & TSL2 caches use heap indices as tags

 Redundant entries in the shader-visible heap TSL1 & TSL2 cache thrashing

CopyDescriptorsSimple

71

CopyDescriptorsSimple

[0] SRV 1

[1] SRV 2

[2] SRV 3

SRV 1

SRV 2

SRV 3

SRV 4

SRV 5

SRV 6

SRV 7

[3] SRV 7

Solution #1: Split SRV Ranges

SetGraphicsRootDescriptorTable

SRV 1

SRV 2

SRV 3

SRV 1

SRV 7

SRV 3

73

SRV 1

SRV 2

SRV 3

SRV 4

SRV 5

SRV 6

SRV 7

Solution #2: Shader SRV Indexing
SetGraphicsRootDescriptorTable

Shader-Visible
SRV Descriptor Heap

SRV 1

SRV 2

SRV 3

SRV 4

SRV 5

SRV 6

SRV 7

+ Dynamically index SRV descriptor in shaders
using per-draw-call indices stored in a Root CBV

74

Split SRV Ranges vs Shader SRV Indexing

 Shader SRV Indexing

o Unique SRVs in shader-visible descriptor heap

o No CopyDescriptorsSimple calls used

o Slight SM overhead (extra registers & instructions injected by driver)

 Split SRV Ranges

o CopyDescriptorsSimple CPU overhead

o SetGraphicsRootDescriptorTable CPU & GPU overhead

o Can use the same shader byte code on DX12 & DX11

75

DX12 Advanced Topic:

Pixel Shader Barriers

GPU: GTX 1080

76

Pixel Shader Barriers (PSBs)

 PSB == lightweight WFI (Wait For Idle) for PS-to-PS dependencies.

o Hardware command available on Maxwell and beyond.

o Used automatically by our driver on DX11.

 On DX12, used in ResourceBarrier Transition calls with:

o StateBefore = D3D12_RESOURCE_STATE_RENDER_TARGET

o StateAfter = D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE

 All other transitions map to full-pipeline WFIs.

79

80

POST-PROCESSING
CHAIN

BEFORE AFTER RATIO

Top SOLs
TEX:35.4%

L2:33.3%

SM:29.9%

TEX:40.5%

L2:38.3%

DRAM:36.1%

TEX:1.1x

L2:1.2x

DRAM:1.2x

Wait For Idle

Count
44 13

Pixel Shader Barrier

Count
0 31

GPU Elapsed Time 0.39 ms 0.29 ms 26% Gain

ResourceBarrier Flag Optimization

82

Conclusion

 Nsight Graphics 1.0

o Makes it easier to export frames to C++ and build them as EXE

o Exposes powerful hardware metrics in the Range Profiler

 Blog post for more details:

o “The Peak-Performance Analysis Method for Optimizing Any GPU Workload”

 Demo of Nsight Graphics at NVIDIA Expo Booth

https://devblogs.nvidia.com/the-peak-performance-analysis-method-for-optimizing-any-gpu-workload/

83

Questions?

Louis Bavoil
lbavoil@nvidia.com

