
Holger Gruen Senior DevTech Engineer, 3/1/2017

DirectX™ 12 Case Studies

2www.gameworks.nvidia.com

Agenda

•Introduction

•DX12 in The Division from Massive Entertainment

•DX12 in Anvil Next Engine from Ubisoft

•DX12 in Hitman from IO Interactive

•DX12 in 'Game AAA'

•AfterMath Preview

•Nsight VSE & DirectX12 Games

•Q&A

gameworks.nvidia.com

3www.gameworks.nvidia.com

Agenda

•Introduction

•DX12 in The Division from Massive Entertainment

•DX12 in Anvil Next Engine from Ubisoft

•DX12 in Hitman from IO Interactive

•DX12 in 'Game AAA'

•AfterMath Preview

•Nsight VSE & DirectX12 Games

•Q&A

gameworks.nvidia.com

4www.gameworks.nvidia.com

Introduction

•DirectX 12 is here to stay

•Games do now support DX12 & many engines are transitioning to DX12

•DirectX 12 makes 3D programming more complex

• see DX12 Do’s & Don’ts in developer section on NVIDIA.com

•Goal for this talk is to …

•Hear what talented developers have done to cope with DX12

•See what developers want to share when asked to describe their DX12 story

•Gain insights for your own DX11 to DX12 transition

gameworks.nvidia.com

5www.gameworks.nvidia.com

Thanks & Credits

•Carl Johan Lejdfors Technical Director &
Daniel Wesslen Render Architect - Massive

•Jonas Meyer Lead Render Programmer &
Anders Wang Kristensen Render Programmer - Io-Interactive

•Tiago Rodrigues 3D Programmer - Ubisoft Montreal

gameworks.nvidia.com

6www.gameworks.nvidia.com

Before we really start …

•Things we’ll be hearing about a lot

•Memory Managment

•Barriers

•Pipeline State Objects

•Root Signature and Shader Bindings

•Multiple Queues

•Multi threading

If you get a chance check out the DX12 presentation from Monday’s ‘The Advanced Graphics Techniques tutorial’

gameworks.nvidia.com

7www.gameworks.nvidia.com

Agenda

•Introduction

•DX12 in The Division from Massive Entertainment

•DX12 in Anvil Next Engine from Ubisoft

•DX12 in Hitman from IO Interactive

•DX12 in 'Game AAA'

•AfterMath Preview

•Nsight VSE & DirectX12 Games

•Q&A

gameworks.nvidia.com

8www.gameworks.nvidia.com

from

•Snowdrop Engine

•Developed in-house to support The Division

•Scalable & multi-threaded

•Has a strong focus on great performance and
fast iteration times

•Tom Clancy’s The Division

•An always online, coop game in a modern day setting

gameworks.nvidia.com

9www.gameworks.nvidia.com

from

•Snowdrop Engine

•Developed in-house to support The Division

•Scalable & multi-threaded

•Has a strong focus on great performance and
fast iteration times

•Tom Clancy’s The Division

•An always online, coop game in a modern day setting

gameworks.nvidia.com

10www.gameworks.nvidia.com

from

•Snowdrop Engine

•Developed in-house to support The Division

•Scalable & multi-threaded

•Has a strong focus on great performance and
fast iteration times

•Tom Clancy’s The Division

•An always online, coop game in a modern day setting

gameworks.nvidia.com

11www.gameworks.nvidia.com

The Division DX12 - Agenda

•Asynchronous Queues

•Memory Management

•Pipeline State Objects

•Shader Model 5.1 Resource Binding

•Multi threading

•Miscellaneous

gameworks.nvidia.com

12www.gameworks.nvidia.com

•Compute Queue

•Nice cross vendor speedup

• On average 5%

• Asynchronous workload mostly resolution-independent (tuned for 1080p)

• Diminishing returns as resolution increases

The Division DX12 : Asynchronous Queues

GraphicsQueue

ComputeQueue

Shadow maps, G-buffer, post fx …

Motion vectors, histogram, GI, ray marched VolumeFog, wind, snow particles,…

gameworks.nvidia.com

13www.gameworks.nvidia.com

•The engine uses 3 Copy Queues

•Multiple copy queues ease engine thread synchronization

The Division DX12 : Asynchronous Queues

CopyQueue1

CopyQueue2

High frequency copies from upload to default heap

Asynchronous streaming of mip map data

CopyQueue3
Data initialization during resource creation

gameworks.nvidia.com

14www.gameworks.nvidia.com

The Division DX12 : Memory Managment

•After DX12 bring-up, MemoryManagment improvements increased performance most

•One type of CB accidentally allocated as committed resource

•Caused memory fragmentation => intermittent stuttering

•Sub-allocation from a larger heap (as intended) improved performance by ~15%

•Used GPUView to detect this

• Not overcommitted on memory

• Saw a huge amount of copies from outside the game process

gameworks.nvidia.com

15www.gameworks.nvidia.com

The Division DX12 : Memory Managment

•Tuning which resources to allocate from which heap added >2% perf

• Included adjusting rules for where to allocate placed resources

Heap1

Temp RTs

of any size

on direct queue

Heap2

Temp non-RTs

of any size

on compute

queue

Multiple Heaps

for non-RT

textures

non-RT

textures

<= 16 MB

Multiple

heaps with

large buffers

Buffers (no

hazard tracking)

<= 8 MB

suballocated

from large

buffers

Multiple heaps

for buffers

Buffers

(hazard

tracking)

<= 8 MB

gameworks.nvidia.com

16www.gameworks.nvidia.com

The Division DX12 : Memory Managment

•Typically frequently-updated-and-rarely-read buffers are placed on the upload heap

•Constant Buffers

•Dynamic VBs, …

•Turns out this strategy is not optimal for The Division

• Copying data from the an upload to a default heap generates a nice speedup > 1%

gameworks.nvidia.com

17www.gameworks.nvidia.com

The Division DX12 : Pipeline State Objects

•Luckily “Shader State Object” concept was already used by the engine

•Mapped nicely to DX12 PSO after some small extension work

•Most PSOs get pre-created when the game starts and during streaming

•Support to skip rendering objects for ‘missing’ PSOs

•Ended up restructuring mesh queuing and rendering to reduce # of PSO changes

•Unifying all equivalent artists created render states

•Saved >= ~15% CPU time (Better batching)

gameworks.nvidia.com

18www.gameworks.nvidia.com

The Division DX12 : SM 5.1 Resource Binding

•Unbounded descriptor tables simplify many things

•Allows to store all local material indices in one CB

•Makes mesh rendering very efficient on the CPU

•Only VB,IB and a single root CBV changed per PSO change

•During streaming updated textures are placed at the same table index

•Descriptor heap with texture descriptors triple buffered to prevent race conditions

0

2

4

1

Diffuse

Normal

Index CB

TD0

TD1

TD2

TD3

TD4

Diffuse DT

TD0

TD1

TD2

TD3

TD4

Normal DT

sample_l r5.w, r7.xyxx, t3[r5.w].yzwx, s1[14], l(0)

sample_l r5.w, r7.xyxx, t3[r5.w].yzwx, s1[14], l(0)

gameworks.nvidia.com

19www.gameworks.nvidia.com

The Division DX12 : Multi threading

• DX12 finally allows multi-threaded submission and recording

•One thread per queue type (Direct, Compute, Copy)

• recording more complex command lists and submitting work

•Command list recording runs on all cores

• 43 tasks – able to run on as many threads

gameworks.nvidia.com

20www.gameworks.nvidia.com

The Division DX12 : Miscellaneous

•SM 5.1 and /all_resources_bound Shader compiler flag improve perf by ~1.0-1.5%

•No change in shader code necessary

•Enables less conservative code generation for texture accesses

•Not new: check https://blogs.msdn.microsoft.com/marcelolr/2016/08/19/understanding-all_resources_bound-in-hlsl/

Code snippets from: https://blogs.msdn.microsoft.com/marcelolr/2016/08/19/understanding-all_resources_bound-in-hlsl/

w/o /all_resources_bound with /all_resources_bound

gameworks.nvidia.com

21www.gameworks.nvidia.com

Agenda

•Introduction

•DX12 in The Division from Massive Entertainment

•DX12 in Anvil Next Engine from Ubisoft

•DX12 in Hitman from IO Interactive

•DX12 in 'Game AAA'

•AfterMath Preview

•Nsight VSE & DirectX12 Games

•Q&A

gameworks.nvidia.com

22www.gameworks.nvidia.com

Anvil Next Engine from Ubisoft

•Used in Assassin's creed series

• Initial ‘naïve’ port revealed a number of performance issues

• Inefficient Barriers

•Hitching on PSO creation

•Memory over-commitment

This is a condensed version of Tiago Rodrigues talk “Moving to DirectX 12: Lessons Learned” – check out the full version!

gameworks.nvidia.com

23www.gameworks.nvidia.com

Anvil Next Engine from Ubisoft

•Re-designed to get the best out of DX12

1. Minimize and batch resource barriers

2. Take full advantage of parallel CMD list recording

3. Use precompiled render state to minimize runtime work

4. Minimize memory footprint

5. Make use of the several GPU queues

gameworks.nvidia.com

24www.gameworks.nvidia.com

Anvil Next Engine - Agenda

•Automatic Resource Tracking

•Barriers

•Shader Bindings

•Pipeline State

gameworks.nvidia.com

25www.gameworks.nvidia.com

Anvil Next Engine – Resource Tracking

• Engine code explicitly defines a dependency graph

• Each pass/producer defines which resources are needed and in which state

GPU execution order:

Compute

Copy

Graphics

Producers:

Dependencies:

GPU Queues:

gameworks.nvidia.com

26www.gameworks.nvidia.com

Anvil Next Engine – Resource Tracking

• Engine tracks resource dependencies automatically

• Analyzes graph dependency graph between GPU producers & consumers

: execution order

Derived dependencies:

: resource write

: resource read

Explicit dependencies:

: producer

: resource

gameworks.nvidia.com

27www.gameworks.nvidia.com

Anvil Next Engine – Resource Tracking

• Engine tracks resource life times automatically

: execution order

Derived dependencies:

: resource write

: resource read

Explicit dependencies:

: producer

: resource

gameworks.nvidia.com

28www.gameworks.nvidia.com

Anvil Next Engine – Resource Tracking

• Engine tracks resource life times automatically

• Engine uses life times to determine options for memory reuse (placed resources)

: execution order

Derived dependencies:

: resource write

: resource read

Explicit dependencies:

: producer

: resource

gameworks.nvidia.com

29www.gameworks.nvidia.com

Anvil Next Engine – Resource Tracking

• Engine tracks resource access synchronization automatically

• SSAO buffer produced in compute, consumed in GFX queue

: execution order

Derived dependencies:

: resource write

: resource read

Explicit dependencies:

: SSAO

: SSAO

: Depth

: G-Buffer

: lighting

Producers:

Resources: Compute

Graphics

gameworks.nvidia.com

30www.gameworks.nvidia.com

Anvil Next Engine – Resource Tracking

• Engine tracks resource access synchronization automatically

•SSAO on compute queue must wait for G-Buffer rendering to finish

: execution order

Derived dependencies:

: resource write

: resource read

Explicit dependencies:

: SSAO

: SSAO

: Depth

: G-Buffer

: lighting

Producers:

Resources: Compute

Graphics

: auto fencing

gameworks.nvidia.com

31www.gameworks.nvidia.com

Anvil Next Engine – Resource Tracking

• Engine tracks resource access synchronization automatically

•Deferred lighting on GFX queue must wait for SSAO to finish

: execution order

Derived dependencies:

: resource write

: resource read

Explicit dependencies:

: SSAO

: SSAO

: Depth

: G-Buffer

: lighting

Producers:

Resources: Compute

Graphics

: auto fencing

gameworks.nvidia.com

32www.gameworks.nvidia.com

Anvil Next Engine – Resource Tracking

• Engine tracks resource access synchronization automatically

•User can add manual sync to better match workloads

: execution order

Derived dependencies:

: resource write

: resource read

Explicit dependencies:

: SSAO

: SSAO

: Depth

: G-Buffer

: lighting

Producers:

Resources: Compute

Graphics

: auto fencing

: Shadows
: manual fencing

gameworks.nvidia.com

33www.gameworks.nvidia.com

Anvil Next Engine – Barriers

•Using producer resource dependencies

Batch transitions at producer boundaries

Determine minimal set of merged states

Auto split barriers

gameworks.nvidia.com

34www.gameworks.nvidia.com

Anvil Next Engine – Barriers

•Barriers at producer boundaries

: resource write

: resource read

: Producer

: Depth Buffer DepthWrite ->

PS Resource

Barriers:

: Shadow Map

gameworks.nvidia.com

35www.gameworks.nvidia.com

Anvil Next Engine – Barriers

•Auto split barriers

: resource write

: resource read

: Producer

: Depth Buffer

DepthWrite ->

PS Resource

Begin DepthWrite ->

PS Resource

End DepthWrite ->

PS Resource

Barriers:

: Shadow Map

gameworks.nvidia.com

36www.gameworks.nvidia.com

Anvil Next Engine – Barriers

•Group Barriers

: resource write

: resource read

Single call

to ResourceBarrier()

DepthWrite ->

PS Resource

Begin DepthWrite ->

PS Resource

End DepthWrite ->

PS Resource

Barriers:

: Producer

: Depth Buffer

: Shadow Map

gameworks.nvidia.com

37www.gameworks.nvidia.com

Anvil Next Engine – Shader Bindings

•Re-architected to match DX12 binding model

•Engine class ShaderInputLayout maps to DX12 Root Signature

•Hides root signature 1.0/1.1, tier restrictions etc.

•Engine class ShaderInputGroup maps to DX12 Descriptor Tables

•Abstracts underlying API details like bind slots

•ShaderInputGroup is the granularity of change

•Each unique ShaderInputGroup gets compiled to an immutable Blob

gameworks.nvidia.com

38www.gameworks.nvidia.com

Anvil Next Engine – Pipeline State

•Run-time PSO creation is expensive

•Engine thus supports two modes for PSO creation

•Blob based PSOs for data driven material rendering code paths

• Uses precompiled groups of state

• Uses predefined state presets to restricts independent state changes

• Opens the opportunity for load time/offline blob compile time optimization

•Legacy mode for DX9-style changes in state (only used in legacy code rendering passes)

• Late compilation (then cached)

gameworks.nvidia.com

39www.gameworks.nvidia.com

Agenda

•Introduction

•DX12 in The Division from Massive Entertainment

•DX12 in Anvil Next Engine from Ubisoft

•DX12 in Hitman from IO Interactive

•DX12 in 'Game AAA'

•AfterMath Preview

•Nsight VSE & DirectX12 Games

•Q&A

gameworks.nvidia.com

40www.gameworks.nvidia.com

Hitman from IO Interactive

•About the game

• Episodic Murder simulator

• Released March 2016

Also Check:

http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/meyer_jonas_rendering_hitman_with.pdf

gameworks.nvidia.com
http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/meyer_jonas_rendering_hitman_with.pdf

41www.gameworks.nvidia.com

Hitman Renderer

•Deals with fully dynamic scenes

•Exceptions are reflection and ambient probe generation during level load

•Tile Deferred lighting

•Forward lit uses separate pass

• Gate/Room(Portal/Cell) system used to cull lighting

• Shadows

•4 VSM Cascades, 4th is static

• 4-8 Extra shadow maps

gameworks.nvidia.com

42www.gameworks.nvidia.com

Hitman Scene Complexity

•A typical scene contains

• ~100k Objects

• 10k+ Light sources

• up to 2k Lights visible per frame

• up to 5-10k Draw Calls Per frame

• up to 10-15K Draw Instances Per frame

gameworks.nvidia.com

43www.gameworks.nvidia.com

Hitman DX12 - Agenda

•CPU performance

•Memory Managment

•Allocations & Fences

•State Managment

•Resource Transitions

•Misc

gameworks.nvidia.com

44www.gameworks.nvidia.com

This time code could be profiled and fixed as it was engine code!

•Setting too many redundant descriptors

•Made sure to only set descriptors that actually get used

•Sub-optimal batching

•Ended up batching Resource Transitions and
Command List submissions

•Managed to eventually match the fastest driver through multi-threading

Initial Problems : CPU performance

ECL:

CL1

ECL:

CL2

ECL:

CL3

ECL:

CL1

CL2

CL2

gameworks.nvidia.com

45www.gameworks.nvidia.com

Initial Problems: DX12 Memory Management 1

•DX12 video memory consumption too high (vs DX11)

•DX11 drivers are really good at moving memory to/from video memory

•Ended up implementing a system to page out (evict) resources

•Used extremely simple LRU model

•Lots of work that wasn’t anticipated

•Still not ideal / MakeResident blocks

•Performs worse on DX12 especially on low vidmem cards

gameworks.nvidia.com

46www.gameworks.nvidia.com

Initial Problems: DX12 Memory Management 2

• Implemented Render target memory reuse system (placed resources)

• Introduced sub-allocation for static resources

• Creating committed resources for everything will use tons of memory

•Memory savings on PC not as high as on consoles

• Resource tiers prevent all memory to be reused for all kinds of resources

Heap for static textures

TX0 TX1

TX4
TX5

TX2

TX6
TX7

gameworks.nvidia.com

47www.gameworks.nvidia.com

DX12 Resource Allocation & Fences

•Needed a super fast allocator for lockless allocation of frame resources

•Lots of on-the-fly resource allocations during a frame

• Descriptors

• Upload heaps etc.

• Fences are expensive

•Tried using them for fine grained reuse of resources

•Ended up using one SignalFence to sync all resource reuse

gameworks.nvidia.com

48www.gameworks.nvidia.com

DX12 State Management 1

•Store PSO and other state with pixel shader object

•Vast majority of pixel shaders only have a few
permutations

•Permutations accessible via hash

•Removed sampler state objects from state
management

• Decided to use 16 fixed sampler states

PixelShader Obj

HashMap(State)

State 1

State N

StateBlock N

PSO N

Viewports N

StateBlock 1

PSO 1

Viewports 1

gameworks.nvidia.com

49www.gameworks.nvidia.com

DX12 State Management 2

•Create unique state hash for each state

•Put all state blocks in pools with unique IDs

• State blocks are: Rasterizer State, shaders etc.

• Use block IDs as bits to construct a state hash

State Hash Key : 128 Bits

PSO-ID Viewports-ID

gameworks.nvidia.com

50www.gameworks.nvidia.com

DX12 Resource Transitions

• Implemented simplified resource transition system

•Assumes READ/SRV as the default state

•Only supports transitions to RTV, UAV, DSV and back

•Additional transitions needed only needed for UAV-UAV Barriers

•All transitions submitted by a main render thread

• Main render thread can also record command lists and does all multi-thread syncs

• Greatly simplifies code

Main Render Thread

CL

threads

Batch

Transitions

gameworks.nvidia.com

51www.gameworks.nvidia.com

DX12 Misc.

•Multi GPU

•Only linked adapter mode

•Manually copying of resources

•Uses separate copy queue

•Making DX12 as fast as DX11

•When stuff was running 100% perfect still saw 5-10% performance delta

•The only way this could be solved was with the help of IHV's.

GPU0 GPU1

Cross-node

resource copies

gameworks.nvidia.com

52www.gameworks.nvidia.com

gameworks.nvidia.com

53www.gameworks.nvidia.com

DX12 Misc.

•Multi GPU

•Only linked adapter mode

•Manually copying of resources

•Uses separate copy queue

•Making DX12 as fast as DX11

•When stuff was running 100% perfect still saw 5-10% performance delta

•The only way this could be solved was with the help of IHV's.

GPU0 GPU1

Cross-node

resource copies

gameworks.nvidia.com

54www.gameworks.nvidia.com

Agenda

•Introduction

•DX12 in The Division from Massive Entertainment

•DX12 in Anvil Next Engine from Ubisoft

•DX12 in Hitman from IO Interactive

•DX12 in 'Game AAA'

•AfterMath Preview

•Nsight VSE & DirectX12 Games

•Q&A

gameworks.nvidia.com

55www.gameworks.nvidia.com

DX12 in 'Game AAA' - Agenda

•Memory Managment

•Root Signatures

•Barriers

gameworks.nvidia.com

56www.gameworks.nvidia.com

'Game AAA' – DX12 Memory Management

•Things learned

•Explicit memory management is the key to great & consistent performance

•LRU resources management strategy goes a long way

• Keep resource in memory for a while after it has been used last

• Bring in only when it has been evicted

gameworks.nvidia.com

57www.gameworks.nvidia.com

'Game AAA' – Root Signature Tables 1

•Supporting resource binding tier 2

•CB descriptors in tables must be unbound (set to 0) when not used

• Nvidia drivers now support uncleared descriptors

•Moved CBVs into the root to skip unbinding

• CBVs are just a GPU address when used as root CBVs

• No need to call CreateConstantBufferView()

gameworks.nvidia.com

58www.gameworks.nvidia.com

'Game AAA' – Root Signature Tables 2

•Made sure to use optimal shader visibility flags for all RST entries

• Avoid SHADER_VISIBILITY_ALL wherever possible

gameworks.nvidia.com

59www.gameworks.nvidia.com

'Game AAA' – Root Signature Tables
...
CBV(b2, visibility = SHADER_VISIBILITY_ALL),
CBV(b0, visibility = SHADER_VISIBILITY_VERTEX),
CBV(b1, visibility = SHADER_VISIBILITY_VERTEX),
CBV(b0, visibility = SHADER_VISIBILITY_PIXEL),
CBV(b1, visibility = SHADER_VISIBILITY_PIXEL),
CBV(b0, visibility = SHADER_VISIBILITY_HULL),
CBV(b1, visibility = SHADER_VISIBILITY_HULL),
CBV(b0, visibility = SHADER_VISIBILITY_DOMAIN),
CBV(b1, visibility = SHADER_VISIBILITY_DOMAIN),

DescriptorTable(SRV(t0, numDescriptors= 64), visibility = SHADER_VISIBILITY_VERTEX),
DescriptorTable(Sampler(s0, numDescriptors= 16), visibility = SHADER_VISIBILITY_VERTEX),
DescriptorTable(SRV(t0, numDescriptors= 64), visibility = SHADER_VISIBILITY_PIXEL),
DescriptorTable(Sampler(s0, numDescriptors= 16), visibility = SHADER_VISIBILITY_PIXEL),
DescriptorTable(SRV(t0, numDescriptors= 64), visibility = SHADER_VISIBILITY_HULL),
DescriptorTable(Sampler(s0, numDescriptors= 16), visibility = SHADER_VISIBILITY_HULL),
DescriptorTable(SRV(t0, numDescriptors= 64), visibility = SHADER_VISIBILITY_DOMAIN),
DescriptorTable(Sampler(s0, numDescriptors= 16), visibility = SHADER_VISIBILITY_DOMAIN)
...

gameworks.nvidia.com

60www.gameworks.nvidia.com

'Game AAA' – Root Signature Tables 2

•Made sure to use optimal shader visibility flags for all RST entries

• Avoid SHADER_VISIBILITY_ALL wherever possible

•Cache RST state in CPU memory to skip redundant binds helped CPU perf

•Mimizing RST changes turned out to be a winner

•Changed to two layouts for the entire frame

gameworks.nvidia.com

61www.gameworks.nvidia.com

'Game AAA' – Barriers

• Initial DX12 path had redudant barriers

•Barriers were hidden in abstraction layers (triggered automatically)

• Works most of the time

•For specfic cases engine switches to explicit barrier management

• NOP on DX11

•Deferred barriers were used to skip further redundancy and batch up barriers

•Append barriers to a pending list

•Wait until last moment to flush the list

• Filter away redundancies

gameworks.nvidia.com

62www.gameworks.nvidia.com

Agenda

•Introduction

•DX12 in The Division from Massive Entertainment

•DX12 in Anvil Next Engine from Ubisoft

•DX12 in Hitman from IO Interactive

•DX12 in 'Game AAA'

•AfterMath Preview

•Nsight VSE & DirectX12 Games

•Q&A

gameworks.nvidia.com

63www.gameworks.nvidia.com

DEBUGGING GPU (CURRENTLY)

1. Crash detected based on error code from API (CPU)

2. Crash happened sometime in the last N frames of commands…

3. CPU call stack is likely a red-herring

See Alex Dunn’s talk about AfterMath on Thursday 3/2/2017 at 3:00 PM!

CPU Location

GPU Crash

Not useful for debugging!

∞0

Frame

gameworks.nvidia.com

64www.gameworks.nvidia.com

GPU DEBUGGING 101

1st line of defense: MSFT Debug Layer

2nd line of defense: MSFT GPU-Based Validation

3rd line of defense:

Preventative

Changes timing

Development-use Only

Limited coverage

- Catches issues that fall through

- Minimal impact

- Shippable

gameworks.nvidia.com

65www.gameworks.nvidia.com

NVIDIA AFTERMATH

CPU Location

∞Fn

KO: Increase accuracy of GPU crash location

Idea:

• Inline user defined markers with the command stream

•GPU signals each marker once reached

•Last marker reached indicates GPU crash location

GPU Crash

gameworks.nvidia.com

66www.gameworks.nvidia.com

NVIDIA AFTERMATH

Deployment

•New tool to help diagnose GPU crashes (Header + DLL)

•Extremely flexible/simple API

•Currently compatible with; DX11 and DX12 – UWP and/or Windows 7+

Limitations

•Requires NVIDIA GeForce driver version 378.xx and above!

•Currently not compatible with D3D debug layers

gameworks.nvidia.com

67www.gameworks.nvidia.com

Agenda

•Introduction

•DX12 in The Division from Massive Entertainment

•DX12 in Anvil Next Engine from Ubisoft

•DX12 in Hitman from IO Interactive

•DX12 in 'Game AAA'

•AfterMath Preview

•Nsight VSE & DirectX12 Games

•Q&A

gameworks.nvidia.com

68www.gameworks.nvidia.com

Agenda

•Introduction

•DX12 in The Division from Massive Entertainment

•DX12 in Anvil Next Engine from Ubisoft

•DX12 in Hitman from IO Interactive

•DX12 in 'Game AAA'

•AfterMath Preview

•Nsight VSE & DirectX12 Games

•Q&A

gameworks.nvidia.com

69www.gameworks.nvidia.com

Q&A

gameworks.nvidia.com

