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DEEP LEARNING INTRODUCTION
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WHAT IS AI TO YOU?
Rules, scripts
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WHAT IS AI TO YOU?
Solvers
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WHAT IS AI TO YOU?
Statistical methods, Machine Learning, Deep Learning
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WHAT IS AI TO YOU?

All of these are AI

So why are we focused on Deep Learning?
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DEEP LEARNING
Huge progress in many fields

communication
沟通
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WHY DEEP LEARNING
Algorithms that Learn from Examples

Feature 

Extraction, 

Machine 

Learning

Traditional Approach

 Requires domain experts
 Time consuming
 Error prone
 Not scalable to new 

problems

Deep Neural Network

Deep Learning Approach

 Learn from data
 Easy to extend
 Efficient & scalable
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WHY DEEP LEARNING

Scale Matters 

Millions to Billions of parameters

Data Matters

Learn with more data

Productivity Matters

SW + HW tools speed experiments
Data & Compute

Accuracy

Deep Learning

Many previous 
methods
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DEEP NEURAL NET
Function approximator

One layer nonlinearity

Deep Neural Net

Stacked layers learn progressively more useful features

Can be practically trained on huge datasets
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SUPERVISED LEARNING
Learning mappings from labeled data

Learning X ➡ Y mappings is hugely useful

NO

YES
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SUPERVISED LEARNING

Image classification

Speech recognition

Speech synthesis

Recommendation systems

Natural language understanding

(Game state, action) ➡ reward

Learning mappings from labeled data

Most surprisingly: these mappings can generalize
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EXAMPLES

↣ Content Creation

User Interfaces

Game AI

And explanations

Also, See Andrew Edelsten’s talk
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CLASSIFICATION

Where modern deep learning got its start: 
Imagenet

Image classification useful for a bunch of tasks

Pretrained models widely available:

https://github.com/KaimingHe/deep-residual-
networks

Transfer learning, perceptual losses super useful

[He et al.] arXiv:1512.03385

https://github.com/KaimingHe/deep-residual-networks
https://arxiv.org/abs/1512.03385
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CONVOLUTIONAL NEURAL NETWORK

Convolution gives location invariance

Weight sharing a powerful technique

Terms you might hear:

Striding (skip outputs periodically)

Feature map (output of neural network layer)

Pooling (reduce size of feature map)

Dense layers (Fully connected)
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COLORIZATION

Convolutional neural network to predict
color from black and white images

Lots of cool old films and photos out there

[Zhang et al.] arXiv:1603.0851

Ansel Adams
photographs

Automatically
colorized

https://arxiv.org/pdf/1603.08511.pdf
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COLORIZATION
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SUPERRESOLUTION

Generative Adversarial Network for superresolution

These could have lots of interesting applications to games 

Marco Foco, Dmitry Korobchenko will talk about this next!

[Ledig et al.] arXiv:1609.04802

4x upsampling

https://arxiv.org/abs/1609.04802
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GENERATIVE ADVERSARIAL NETWORK

Exciting technique for unsupervised learning

Discriminator teaches generator how to create convincing output

Ming-Yu Liu
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FLUID SIMULATION

Approximate solution to Euler 
equations using CNN

Use semi-supervised training with 
traditional solver to create training 
data

[Tompson et al] arXiv:1607.03597

https://arxiv.org/abs/1607.03597
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EXAMPLES

Content Creation

↣ User Interfaces

Game AI

And explanations
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SPEECH RECOGNITION

Beats human accuracy for some 
speech recognition tasks

Trained on 12000 hours of data (1.4 Y)

Recurrent Neural Network

Long-Short-Term-Memory (LSTM)

[Amodei et al.] arXiv:1512.02595

. . . 

. . . 

T          H        _         E   …      D   O    G            

https://arxiv.org/abs/1512.02595
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NEURAL MACHINE TRANSLATION

Significant improvement in machine translation

Google has deployed NMT for English to & from {French, German, Spanish, 
Portuguese, Chinese, Japanese, Korean, Turkish}

[Wu et al.] arXiv:1609.08144

https://arxiv.org/abs/1609.08144
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NEURAL MACHINE TRANSLATION

Attentional sequence to sequence model (LSTM)

[Wu et al.] arXiv:1609.08144

https://arxiv.org/abs/1609.08144
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SPEECH SYNTHESIS: WAVENET

Audio generation using convolutional neural networks

Predict each sample directly

Cut scenes? NPCs that really talk?

[van den Oord et al.] arXiv: 1609.03499 

Concatenative TTS

Wavenet

https://arxiv.org/abs/1609.03499
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GESTURE RECOGNITION

Recurrent 3D CNN

RGB camera, depth camera, 
stereo IR

What new games can we make with
better controls?

[Molchanov et al., CVPR 2016]

https://research.nvidia.com/publication/online-detection-and-classification-dynamic-hand-gestures-recurrent-3d-convolutional
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EXAMPLES

Content Creation

User Interfaces

↣ Game AI

And explanations
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REINFORCEMENT LEARNING

Problem: Given

Current state

Possible actions

(Potentially delayed) Rewards

Learn policy for agent to maximize reward

Mnih et al. 2015
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REINFORCEMENT LEARNING FOR DOOM

Deep Recurrent Q Network outperforms humans at single-player and deathmatch

[Lample, Chaplot] arXiv:1609.05521 

https://arxiv.org/pdf/1609.05521v1.pdf
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SUPER SMASH BROTHERS MELEE

Reinforcement learning does better 
than expert human players

Slox in this video is ranked #51

They beat 10 ranked players

Trained for Captain Falcon

Transfer learning to a few others

[Firoiu, Whitney] arXiv:1702.06230 

https://arxiv.org/pdf/1702.06230.pdf
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SUPER SMASH BROTHERS MELEE

Trained on game state in an emulator (No pixel input)

No flowcharts/scripts

Although they think results might be 
improved with scripts

Ran ~50 emulators to generate 
{state, action, reward} tuples during training

How did they do it?
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ENVIRONMENTS FOR RL

OpenAI Universe DeepMind Lab
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CONCLUSION

Deep learning is making new things possible

Lots of applications for games

Content creation

User interfaces

Game AI

Can’t wait to see what you all come up with!

Questions:

@ctnzr




