CUDA Toolkit 4.0
Performance Report

June, 2011
<A NVIDIA.

CUDA Math Libraries

High performance math routines for your applications:
* cuFFT - Fast Fourier Transforms Library

* cuBLAS - Complete BLAS Library

* cuSPARSE - Sparse Matrix Library

* cuRAND - Random Number Generation (RNG) Library

* NPP - Performance Primitives for Image & Video Processing
* Thrust - Templated Parallel Algorithms & Data Structures
* math.h - C99 floating-point Library

Included in the CUDA Toolkit (free download)

www.nvidia.com/getcuda

For more information on CUDA libraries:
http://www.nvidia.com/object/gtc2010-presentation-archive.html#session2216

cuFFT: Multi-dimensional FFTs
New in CUDA 4.0

Significant performance improvements in:
double precision radix 2, 3, 5and 7
2D/3D sizes that contain prime factors larger than 7

Flexible input and output data layouts*

Similar to the FFTW “Advanced Interface”
Eliminates extra data transposes and copies

amplitude NI R amplitude

3r - ’ —,'...T{,\\l sl

Fx) = Y, /(ne 06}

]/\ n=0 0:4 1
AN

A aa
4"Y0.05 g

1

FAY /\. FAY
1 Y \\72 UOQ}/\O/] time, secs 0.1F
ol | & s
2 f(n) = VE,F(‘)‘ o1t

1
2F
-3

* Only supported for complex-to-complex transforms in this release

FFTs up to 10x Faster than MKL

1D used in audio processing and as a foundation for 2D and 3D FFTs

cuFFT - Single Precision cuFFT - Double Precision

Radix2
—Radix3
— Radix7
—Radix5

MKL

-—
-~

2 4 6 8 10 12 14 16 18 20 22 24 26 28 2 4 6 8 10 12 14 16 18 20 22 24 26 28
log2(size) log2(size)
« MKL 10.1r1 on Intel Quad Core i7-940 1333, 2.93Ghz
o CUFFT 4.0 on Tesla C2070, ECC on

* Performance measured for ~16M total elements,
split into batches of transforms of the size on the x-axis 4

2D/3D primes now use Bluestein Algorithm

Significant performance improvement for 2D and 3D transform sizes

cuFFT Single Precision 2D

mmm CUFFT 4.0
cuFFT 3.2
MKL

800 1000 1200 1400 1600 1800
Transform size (NxN, for prime N)

* MKL 10.1r1 on Intel Quad Core i7-940 1333, 2.93Ghz
* cuFFT4.0 on C2070, ECC on
5

cuBLAS: Dense Linear Algebra on GPUs

Complete BLAS implementation plus useful extensions

Supports all 152 standard routines for single, double, complex,
and double complex

New in CUDA 4.0
New API

Facilitates multi-GPU programming

* Thread-safe

* More routines provide parallelism using streams
Previous “legacy” API still supported out-of-the-box

Rewrote documentation from scratch

Performance improvements
Ex: ZGEMM performance improved 10% on Fermi (325 GFLOPS peak on C2050)

cuBLAS Level 3 Performance

Up to ~800GFLOPS and ~ 17X speedup over MKL
GFLOPS Speedup over MKL

Single Complex Double |Double Complex Single Complex Double Double Complex

* 4Kx4K matrix size * CUBLAS 4.0, Tesla C2050 (Fermi), ECC on * MKL 10.2.3, 4-core Corei7 @ 2.66Ghz

ZGEMM Performance vs. Matrix Size
Up to 8x speedup over MKL

97% of peak perf. (1024x1024)

85% of peak perf. (512x512) BLAS 4.0
=== CU .

MKL

w
o
o
_|
T
O

of peak perf. (612x512)
of peak perf. (1024x1024)

p{0[0]0) 2500

* cuBLAS 4.0, Tesla C2050 (Fermi), ECC on
Performance may vary based on OS version and motherboard configuration * MKL 10.2.3, 4-core Corei7 @ 2.66Ghz

cuSPARSE: Sparse linear algebra routines

* Conversion routines for dense, COO, CSR and CSC formats
* Optimized sparse matrix-vector multiplication for CSR

* New Sparse Triangular Solve CUDA 4.0
* API optimized for common iterative solve algorithms

cuSPARSE is up to 6x Faster than MKL

Sparse Matrix x Dense Vector

Performance may vary based on OS version and motherboard configuration

single
double
== COMplex
=== double-complex

* cUSPARSE 4.0, NVIDIA C2050 (Fermi), ECC on
* MKL 10.2.3, 4-core Corei7 @ 3.07GHz

Up to 35x faster with 6 Dense Vectors
Useful for block iterative solve schemes

N
(@]

single
double
= COMplex
= dOuble-complex

N w w
(6)] (] (6]
1 L 1

N
(]
L

—
(]
L

S
=
1S
0
2
Q 15
=)
O
()
o
Q.
%

(6)]
L

* cuSPARSE 4.0, NVIDIA C2050 (Fermi), ECC on
Performance may vary based on OS version and motherboard configuration * MKL 10.2.3, 4-core Corei7 @ 3.07GHz

cuRAND: Random Number Generation

} Monte Carlo Integratlon

* New in CUDA 4.0
Scrambled and 64-bit Sobol’
* Log-normal distribution

* New parallel ordering supports faster XORWOW initialization

* Results of CURAND generators against standard statistical test
batteries are reported in documentation

cuRAND Performance
cURAND 64-bit Scrambled Sobol’ 8X faster than MKL 32-bit plain Sobol’

16.00 H
6.00 CURAND XORWOW

14.00 CURAND 32-bit Sobol’
12.00 ®m CURAND 32-bit Scrambled Sobol'
10.00 ® CURAND 64-bit Sobol'

8.00 ® CURAND 64-bit Scrambled Sobol'

6.00 MKL 32-bit Sobol' (single thread)

O
@
N
0
°
o
S
@
9p)]
O]

4.00

0.00

uniform | normal | log-normal ‘ uniform normal log-normal

single precision double precision

Performance may vary based on OS version and motherboard configuration * CURAND 4.0, NVIDIA C2050 (Fermi), ECC on

NVIDIA Performance Primitives
Up to 40X speedups

[

Arithmetic, Logic, Conversions, Filters, |
Statistics, etc.

~420 image functions (+70 in 4.0)

~500 signal functions (+400 in 4.0)

Majority of primitives 5x to 10x faster
than analogous routines in Intel IPP

* NPP 4.0, NVIDIA C2050 (Fermi)
* PP 6.1, Dual Socket Core™i7 920 @ 2.67GHz

Thrust: CUDA C++ Template Library

* Added to CUDA Toolkit as of CUDA 4.0

* Also available on Google Code

* Template library for CUDA

* Host and Device Containers that mimic the C++ STL
* Optimized algorithms for sort, reduce, scan, etc.

* OpenMP backend for portability

* Allows applications and prototypes to be built quickly

Thrust Algorithm Performance

Various Algorithms (32M int.) Sort (32M samples)
Speedup compared to C++ STL Speedup compared to C++ STL

: 120 -

B Thrust4.0 B Thrust4.0
Intel TBB Intel TBB

B C++STL | | B C++STL

reduce transform scan char short int long float double
Algorithm Datatype

* Thrust 4.0, NVIDIA Tesla C2050 (Fermi) * Core i7 950 @ 3.07GHz

math.h: C99 floating-point library + extras

CUDA math.h is industry proven, high performance, high
accuracy

«Basic: +, *, /, 1/, sqrt, FMA (all IEEE-754 accurate for float, double, all rounding modes)
«Exponentials: exp, exp2, log, log2, log10, ...

- Trigonometry: sin, cos, tan, asin, acos, atan2, sinh, cosh, asinh, acosh, ...
«Special functions: lgamma, tgamma, erf, erfc

-Utility: fmod, remquo, modf, trunc, round, ceil, floor, fabs, ...

«Extras: rsqrt, rcbrt, exp10, sinpi, sincos, cospi, erfinv, erfciny, ...

ePerformance improvements in CUDA 4.0
eDouble-precision /, rsqrt(), erfc(), & sinh() are all >~30% faster on Fermi

e Added cospi() to CUDA 4.0

