

CUDA Math Libraries

High performance math routines for your applications:

- cuFFT Fast Fourier Transforms Library
- cuBLAS Complete BLAS Library
- cuSPARSE Sparse Matrix Library
- cuRAND Random Number Generation (RNG) Library
- NPP Performance Primitives for Image & Video Processing
- Thrust Templated Parallel Algorithms & Data Structures
- math.h C99 floating-point Library
- Included in the CUDA Toolkit (free download)
 - www.nvidia.com/getcuda
- For more information on CUDA libraries:
 - http://www.nvidia.com/object/gtc2010-presentation-archive.html#session2216

cuFFT: Multi-dimensional FFTs

- New in CUDA 4.0
 - Significant performance improvements in:
 - double precision radix 2, 3, 5 and 7
 - 2D/3D sizes that contain prime factors larger than 7
 - Flexible input and output data layouts*
 - Similar to the FFTW "Advanced Interface"
 - Eliminates extra data transposes and copies

³

FFTs up to 10x Faster than MKL

1D used in audio processing and as a foundation for 2D and 3D FFTs

- MKL 10.1r1 on Intel Quad Core i7-940 1333, 2.93Ghz
- cuFFT 4.0 on Tesla C2070, ECC on
- Performance measured for ~16M total elements, split into batches of transforms of the size on the x-axis

2D/3D primes now use Bluestein Algorithm

Significant performance improvement for 2D and 3D transform sizes

^{*} MKL 10.1r1 on Intel Quad Core i7-940 1333, 2.93Ghz

^{*} cuFFT4.0 on C2070, ECC on

cuBLAS: Dense Linear Algebra on GPUs

- Complete BLAS implementation plus useful extensions
 - Supports all 152 standard routines for single, double, complex, and double complex
- New in CUDA 4.0
 - New API
 - Facilitates multi-GPU programming
 - Thread-safe
 - More routines provide parallelism using streams
 - Previous "legacy" API still supported out-of-the-box
 - Rewrote documentation from scratch
 - Performance improvements
 - Ex: ZGEMM performance improved 10% on Fermi (325 GFLOPS peak on C2050)

cuBLAS Level 3 Performance

Up to ~800GFLOPS and ~17x speedup over MKL

^{* 4}Kx4K matrix size

^{*} cuBLAS 4.0, Tesla C2050 (Fermi), ECC on

^{*} MKL 10.2.3, 4-core Corei7 @ 2.66Ghz

ZGEMM Performance vs. Matrix Size

Up to **8**X speedup over MKL

 $^{^{\}star}$ cuBLAS 4.0, Tesla C2050 (Fermi), ECC on

cuSPARSE: Sparse linear algebra routines

- Conversion routines for dense, COO, CSR and CSC formats
- Optimized sparse matrix-vector multiplication for CSR
- New Sparse Triangular Solve CUDA 4.0
 - API optimized for common iterative solve algorithms

cuSPARSE is up to 6x Faster than MKL

Sparse Matrix x Dense Vector

^{*} cuSPARSE 4.0, NVIDIA C2050 (Fermi), ECC on

^{*} MKL 10.2.3, 4-core Corei7 @ 3.07GHz

Up to 35x faster with 6 Dense Vectors

Useful for block iterative solve schemes

^{*} cuSPARSE 4.0, NVIDIA C2050 (Fermi), ECC on

^{*} MKL 10.2.3, 4-core Corei7 @ 3.07GHz

cuRAND: Random Number Generation

- New in CUDA 4.0
 - Scrambled and 64-bit Sobol'
 - Log-normal distribution
 - New parallel ordering supports faster XORWOW initialization
 - Results of CURAND generators against standard statistical test batteries are reported in documentation

cuRAND Performance

cuRAND 64-bit Scrambled Sobol' 8x faster than MKL 32-bit plain Sobol'

* CURAND 4.0, NVIDIA C2050 (Fermi), ECC on

NVIDIA Performance Primitives

Up to 40x speedups

- Arithmetic, Logic, Conversions, Filters, Statistics, etc.
 - ~420 image functions (+70 in 4.0)
 - ~500 signal functions (+400 in 4.0)
- Majority of primitives 5x to 10x faster than analogous routines in Intel IPP

Thrust: CUDA C++ Template Library

- Added to CUDA Toolkit as of CUDA 4.0
 - Also available on Google Code
- Template library for CUDA
 - Host and Device Containers that mimic the C++ STL
 - Optimized algorithms for sort, reduce, scan, etc.
 - OpenMP backend for portability
- Allows applications and prototypes to be built quickly

Thrust Algorithm Performance

Various Algorithms (32M int.) Speedup compared to C++ STL

Sort (32M samples)
Speedup compared to C++ STL

math.h: C99 floating-point library + extras

CUDA math.h is industry proven, high performance, high accuracy

- •Basic: +, *, /, 1/, sqrt, FMA (all IEEE-754 accurate for float, double, all rounding modes)
- Exponentials: exp, exp2, log, log2, log10, ...
- •Trigonometry: sin, cos, tan, asin, acos, atan2, sinh, cosh, asinh, acosh, ...
- •Special functions: lgamma, tgamma, erf, erfc
- •Utility: fmod, remquo, modf, trunc, round, ceil, floor, fabs, ...
- •Extras: rsqrt, rcbrt, exp10, sinpi, sincos, cospi, erfinv, erfcinv, ...
- Performance improvements in CUDA 4.0
 - •Double-precision /, rsqrt(), erfc(), & sinh() are all >~30% faster on Fermi
- Added cospi() to CUDA 4.0